Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3783-2024
https://doi.org/10.5194/gmd-17-3783-2024
Development and technical paper
 | 
13 May 2024
Development and technical paper |  | 13 May 2024

Balloon drift estimation and improved position estimates for radiosondes

Ulrich Voggenberger, Leopold Haimberger, Federico Ambrogi, and Paul Poli

Related authors

LARA: a Lagrangian Reanalysis based on ERA5 spanning from 1940 to 2023
Lucie Bakels, Michael Blaschek, Marina Dütsch, Andreas Plach, Vincent Lechner, Georg Brack, Leopold Haimberger, and Andreas Stohl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-26,https://doi.org/10.5194/essd-2025-26, 2025
Revised manuscript accepted for ESSD
Short summary
Shift in cold-point tropopause trends derived from radiosonde, satellite, and reanalysis data
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-82,https://doi.org/10.5194/egusphere-2025-82, 2025
Short summary
StraitFlux – precise computations of water strait fluxes on various modeling grids
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024,https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
A quantitative assessment of air–sea heat flux trends from ERA5 since 1950 in the North Atlantic basin
Johannes Mayer, Leopold Haimberger, and Michael Mayer
Earth Syst. Dynam., 14, 1085–1105, https://doi.org/10.5194/esd-14-1085-2023,https://doi.org/10.5194/esd-14-1085-2023, 2023
Short summary
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023,https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary

Cited articles

Aberson, S. D., Sellwood, K. J., and Leighton, P. A.: Calculating Dropwindsonde Location and Time from TEMP-DROP Messages for Accurate Assimilation and Analysis, J. Atmos. Ocean. Techn., 34, 1673–1678, https://doi.org/10.1175/jtech-d-17-0023.1, 2017. 
Alexander, P. and de La Torre, A.: Uncertainties in the measurement of the atmospheric velocity due to balloon-gondola pendulum-like motions, Adv. Space Res., 47, 736–739, https://doi.org/10.1016/j.asr.2010.09.020, 2011. 
Choi, Y., Ha, J., and Lim, G.: Investigation of the Effects of Considering Balloon Drift Information on Radiosonde Data Assimilation Using the Four-Dimensional Variational Method, Weather Forecast., 30, 809–826, https://doi.org/10.1175/WAF-D-14-00161.1, 2015. 
Copernicus Climate Change Service, Climate Data Store: In situ atmospheric harmonized temperature, relative humidity and wind from 1978 onward from baseline radiosonde networks, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f101d0bf, 2021. 
Crutcher, H. L.: Distribution of radiosonde errors, NOAA Tech. Rep. Environmental Data and Information Service (EDIS), 32, U.S. Department Of Commerce, National Oceanic and Atmospheric Administration, https://repository.library.noaa.gov/view/noaa/30830/noaa_30830_DS1.pdf (last access: 7 May 2024), 1979. 
Download
Short summary
This paper presents a method for calculating balloon drift from historical radiosonde ascent data. The drift can reach distances of several hundred kilometres and is often neglected. Verification shows the beneficial impact of the more accurate balloon position on model assimilation. The method is not limited to radiosondes but would also work for dropsondes, ozonesondes, or any other in situ sonde carried by the wind in the pre-GNSS era, provided the necessary information is available.
Share