Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3783-2024
https://doi.org/10.5194/gmd-17-3783-2024
Development and technical paper
 | 
13 May 2024
Development and technical paper |  | 13 May 2024

Balloon drift estimation and improved position estimates for radiosondes

Ulrich Voggenberger, Leopold Haimberger, Federico Ambrogi, and Paul Poli

Related authors

LARA: a Lagrangian Reanalysis based on ERA5 spanning from 1940 to 2023
Lucie Bakels, Michael Blaschek, Marina Dütsch, Andreas Plach, Vincent Lechner, Georg Brack, Leopold Haimberger, and Andreas Stohl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-26,https://doi.org/10.5194/essd-2025-26, 2025
Preprint under review for ESSD
Short summary
Shift in cold-point tropopause trends derived from radiosonde, satellite, and reanalysis data
Mona Zolghadrshojaee, Susann Tegtmeier, Sean M. Davis, Robin Pilch Kedzierski, and Leopold Haimberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-82,https://doi.org/10.5194/egusphere-2025-82, 2025
Short summary
StraitFlux – precise computations of water strait fluxes on various modeling grids
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024,https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
A quantitative assessment of air–sea heat flux trends from ERA5 since 1950 in the North Atlantic basin
Johannes Mayer, Leopold Haimberger, and Michael Mayer
Earth Syst. Dynam., 14, 1085–1105, https://doi.org/10.5194/esd-14-1085-2023,https://doi.org/10.5194/esd-14-1085-2023, 2023
Short summary
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023,https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary

Related subject area

Atmospheric sciences
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary

Cited articles

Aberson, S. D., Sellwood, K. J., and Leighton, P. A.: Calculating Dropwindsonde Location and Time from TEMP-DROP Messages for Accurate Assimilation and Analysis, J. Atmos. Ocean. Techn., 34, 1673–1678, https://doi.org/10.1175/jtech-d-17-0023.1, 2017. 
Alexander, P. and de La Torre, A.: Uncertainties in the measurement of the atmospheric velocity due to balloon-gondola pendulum-like motions, Adv. Space Res., 47, 736–739, https://doi.org/10.1016/j.asr.2010.09.020, 2011. 
Choi, Y., Ha, J., and Lim, G.: Investigation of the Effects of Considering Balloon Drift Information on Radiosonde Data Assimilation Using the Four-Dimensional Variational Method, Weather Forecast., 30, 809–826, https://doi.org/10.1175/WAF-D-14-00161.1, 2015. 
Copernicus Climate Change Service, Climate Data Store: In situ atmospheric harmonized temperature, relative humidity and wind from 1978 onward from baseline radiosonde networks, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f101d0bf, 2021. 
Crutcher, H. L.: Distribution of radiosonde errors, NOAA Tech. Rep. Environmental Data and Information Service (EDIS), 32, U.S. Department Of Commerce, National Oceanic and Atmospheric Administration, https://repository.library.noaa.gov/view/noaa/30830/noaa_30830_DS1.pdf (last access: 7 May 2024), 1979. 
Download
Short summary
This paper presents a method for calculating balloon drift from historical radiosonde ascent...
Share