Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3579-2024
https://doi.org/10.5194/gmd-17-3579-2024
Model evaluation paper
 | 
03 May 2024
Model evaluation paper |  | 03 May 2024

Validation and analysis of the Polair3D v1.11 chemical transport model over Quebec

Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou

Viewed

Total article views: 995 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
784 154 57 995 52 59
  • HTML: 784
  • PDF: 154
  • XML: 57
  • Total: 995
  • BibTeX: 52
  • EndNote: 59
Views and downloads (calculated since 10 Nov 2023)
Cumulative views and downloads (calculated since 10 Nov 2023)

Viewed (geographical distribution)

Total article views: 995 (including HTML, PDF, and XML) Thereof 989 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 04 Nov 2024
Download
Short summary
Air pollution is a major health hazard, and chemical transport models (CTMs) are valuable tools that aid in our understanding of the risks of air pollution at both local and regional scales. In this study, the Polair3D CTM of the Polyphemus air quality modeling platform was set up over Quebec, Canada, to assess the model’s capability in predicting key air pollutant species over the region, at seasonal temporal scales and at regional spatial scales.