Articles | Volume 17, issue 8
https://doi.org/10.5194/gmd-17-3533-2024
https://doi.org/10.5194/gmd-17-3533-2024
Model description paper
 | 
02 May 2024
Model description paper |  | 02 May 2024

Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1

Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins

Model code and software

Code for Identifying Atmospheric Rivers and their Poleward Latent Heat Transport with Generalizable Convolutional Neural Networks Ankur Mahesh et al. https://doi.org/10.5281/zenodo.7814401

Video supplement

Visualization of Idealized Atmospheric-River-like Features Ankur Mahesh https://doi.org/10.5281/zenodo.7806480

Download
Short summary
Atmospheric rivers (ARs) are extreme weather events that can alleviate drought or cause billions of US dollars in flood damage. We train convolutional neural networks (CNNs) to detect ARs with an estimate of the uncertainty. We present a framework to generalize these CNNs to a variety of datasets of past, present, and future climate. Using a simplified simulation of the Earth's atmosphere, we validate the CNNs. We explore the role of ARs in maintaining energy balance in the Earth system.