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Abstract. Atmospheric rivers (ARs) are extreme weather
events that can alleviate drought or cause billions of US dol-
lars in flood damage. By transporting significant amounts of
latent energy towards the poles, they are crucial to main-
taining the climate system’s energy balance. Since there is
no first-principle definition of an AR grounded in geophysi-
cal fluid mechanics, AR identification is currently performed
by a multitude of expert-defined, threshold-based algorithms.
The variety of AR detection algorithms has introduced un-
certainty into the study of ARs, and the thresholds of the
algorithms may not generalize to new climate datasets and
resolutions. We train convolutional neural networks (CNNs)
to detect ARs while representing this uncertainty; we name
these models ARCNNs. To detect ARs without requiring new
labeled data and labor-intensive AR detection campaigns,
we present a semi-supervised learning framework based on
image style transfer. This framework generalizes ARCNNs
across climate datasets and input fields. Using idealized and
realistic numerical models, together with observations, we
assess the performance of the ARCNNs. We test the AR-
CNNs in an idealized simulation of a shallow-water fluid
in which nearly all the tracer transport can be attributed
to AR-like filamentary structures. In reanalysis and a high-
resolution climate model, we use ARCNNs to calculate the
contribution of ARs to meridional latent heat transport, and
we demonstrate that this quantity varies considerably due to
AR detection uncertainty.

1 Introduction

Atmospheric rivers (ARs) are extreme weather events that
have significant impacts on the climate system and human so-
ciety. When ARs make landfall, they can be crucial for allevi-
ating drought (Dettinger, 2013). They provide up to 50 % of
US West Coast rainfall and 30 % of rainfall in Europe (Lavers
and Villarini, 2015). In a single year, they caused USD 1 bil-
lion worth of flood damage (Corringham et al., 2019). The
original study on ARs (Zhu and Newell, 1998) found that
they account for the vast majority of poleward moisture
transport. The latent heat transport of ARs can also contribute
to extreme heatwaves, such as the record-shattering 2021 Pa-
cific Northwest heatwave (Mo et al., 2022).

In this paper, we address two major challenges in AR sci-
ence. First, there are a variety of AR detection algorithms,
and detection uncertainty must be considered when study-
ing ARs (O’Brien et al., 2020a; Rutz et al., 2019; Collow
et al., 2022; Shields et al., 2023). While ARs are qualita-
tively defined as long, narrow columns of moisture, there is
no unambiguous definition of an AR grounded in geophys-
ical fluid dynamics. As a result, a variety of AR detection
algorithms have been developed. In Fig. 1, we demonstrate
how the global AR area varies significantly as a function of
consensus between algorithms. Consensus refers to the pro-
portion of AR detection algorithms that identify an AR at a
given grid cell. With a permissive measure of consensus (re-
quiring only 10 % of detection algorithms to identify an AR),
ARs cover a significantly larger fraction of the globe com-
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pared to a more restrictive threshold, such as 80 %. These
differences yield contrasting pictures of global AR activ-
ity and AR-induced precipitation, and they pose major im-
plications for a phenomenon-focused understanding of ex-
treme weather. Existing work (Fig. 3 in Lora et al., 2020,
and Fig. 2 in Rutz et al., 2019) shows how individual algo-
rithms have different identifications of an AR’s spatial ex-
tent. The algorithm spread introduces uncertainty in the AR
size (Inda-Díaz et al., 2021), lifecycle (Zhou et al., 2021),
response to climate change (O’Brien et al., 2022; Shields
et al., 2023), and relationship to the El Niño–Southern Oscil-
lation (O’Brien et al., 2020b). This detection uncertainty is
also present in studying other atmospheric phenomena that
lack objective definitions, such as blocking (Pinheiro et al.,
2019), tropical cyclones (Bourdin et al., 2022), and extrat-
ropical cyclones (Neu et al., 2013).

Second, many AR detection algorithms use criteria that
do not generalize across datasets. In Fig. 2, we show de-
tections from the algorithm used in the Atmospheric Rivers
reference textbook (Ralph et al., 2020, Sect. 2.3.1). ARs are
defined as events poleward of 20°, with 250 kg m−1 s−1 of
integrated vapor transport (IVT), 20 mm of integrated wa-
ter vapor (IWV), and length scales of at least 2000 km. In
Fig. 2a, we show that the algorithm identifies an AR in the
MERRA-2 reanalysis dataset, but it misses a similar AR in
a free-running high-resolution climate simulation (Fig. 2b).
The AR in Fig. 2b lies slightly under the thresholds in IWV
and IVT, but it still meets the qualitative definition of an AR.
(See Appendix A for a detailed discussion about why this
textbook algorithm does not detect an AR in Fig. 2b.) This
challenge has been well-identified in the existing literature.
Hagos et al. (2015) show that an algorithm’s detections vary
on different dynamical cores and resolutions, so the algo-
rithm may need to be revised in light of these differences.
Reid et al. (2020) further demonstrate how thresholds in IVT
and length are sensitive to dataset resolution. Table 2 in Col-
low et al. (2022) lists detection algorithms that needed to be
retuned when moving across different datasets with different
resolutions. As climate datasets progress (e.g., through the
global storm-resolving models, as in Stevens et al., 2019), the
scalability and generalizability of AR detection algorithms
could pose a challenge for AR detection.

To summarize, for a given dataset, AR detections may dif-
fer across algorithms, and for a given algorithm, AR de-
tections may differ across datasets. Because of these two
challenges, rigorous assessment of ARs is labor-intensive.
It requires retuning, re-implementing, and re-running mul-
tiple detection algorithms. Even for some algorithms that
themselves do not need to be retuned, they may require re-
calculating relative thresholds (e.g., the 85th percentile of
IVT) at each grid cell in new datasets. The Atmospheric
River Tracking Method Intercomparison Project (ARTMIP)
demonstrates the tremendous benefit of systematic AR de-
tection in reanalysis and climate models. Each iteration of
ARTMIP requires time, effort, and coordination among many

different research groups. On a new dataset, it may be im-
practical for an individual research group to replicate this in-
tercomparison.

Therefore, using existing data from ARTMIP, we present
convolutional neural networks (CNNs) designed to alleviate
the above two challenges. For the first challenge, we train
CNNs to replicate the mean of multiple AR detection al-
gorithms and not just one algorithm; we name these neu-
ral networks ARCNNs. For the second challenge, to gener-
alize an ARCNN to different climate datasets, we apply a
method from computer vision called style transfer. By incor-
porating detection uncertainty and generalizability, our AR-
CNNs build upon prior work that has trained neural networks
to detect ARs (Mudigonda et al., 2021; Kurth et al., 2018;
Prabhat et al., 2021; Racah et al., 2017; Liu et al., 2016;
Mudigonda et al., 2017; Higgins et al., 2023) and related
weather phenomena, such as warm conveyor belts (Quint-
ing et al., 2022) and extratropical cyclones (Kumler-Bonfanti
et al., 2020). Higgins et al. (2023) validate their neural net-
work on ARTMIP algorithms. The network is flexible across
different datasets, and they note that its performance is best
when training and inference are performed on the same data
domain and resolution. Prior CNNs for AR detection have
been trained on binary AR detections, and they have not been
designed with explicit considerations of generalizing to mul-
tiple climate datasets. Through style transfer, our framework
generalizes ARCNNs to new datasets without requiring ad-
ditional training labels, which are a major bottleneck in using
machine learning in Earth system science (Reichstein et al.,
2019). In particular, we train an AR detector to detect ARs
in satellite data. Removing the need to identify ARs by hand,
this could be deployed for meteorological applications before
reanalyses become available.

A challenge with CNNs is that they have millions of tun-
able parameters, so they can be hard to interpret. Prior re-
search (Mamalakis et al., 2022a; Madakumbura et al., 2021;
Mahesh et al., 2019; Davenport and Diffenbaugh, 2021;
Toms et al., 2020) has applied interpretability methods from
computer vision to CNNs used in climate science. To val-
idate the trustworthiness of our CNNs, we use a hierarchy
of dynamical models of varying complexity. We validate our
CNNs on an idealized simulation in which almost all the mid-
latitude vapor transport can be attributed to AR-like struc-
tures. We test whether the detections of the CNN meet this
characteristic of the simulation.

We demonstrate that ARCNNs can be used to explore im-
portant AR-related science questions. We apply the ARCNN
detector to investigate how detector uncertainty affects esti-
mates of AR-induced meridional latent heat transport (LHT).
Traditionally, ARs have been thought to account for virtu-
ally all the meridional moisture flux in the extratropics dur-
ing winter (Zhu and Newell, 1998). However, AR-induced
meridional LHT significantly decreases as detector consen-
sus increases. We demonstrate the extent of this change in
MERRA-2 reanalysis and a High Resolution Model Inter-
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Figure 1. Variations in AR detections based on level of consensus between AR detectors. AR detector consensus refers to the proportion of
14 AR detection algorithms that identify an AR at each grid cell. Four different levels of consensus (left) on 4 April 2009: 10 % (top left),
50 % (top right), 80 % (bottom left), and 100 % (bottom right). Shading represents integrated vapor transport (IVT). Global IVT (right) from
MERRA-2 (Gelaro et al., 2017) on the same date.

Figure 2. AR detections in MERRA-2 and ECMWF-IFS-HR from a threshold-based detection algorithm. (a) The detection algorithm from
the Atmospheric Rivers textbook (Ralph et al., 2020) identifies an atmospheric river (AR) in MERRA-2 reanalysis (Gelaro et al., 2017). The
AR contour is shown in red. (b) The same threshold algorithm does not identify an atmospheric river with a similar structure in ECMWF-
IFS-HR (Roberts et al., 2018), a free-running, high-resolution climate model.

comparison Project (HighResMIP) model (Haarsma et al.,
2016). Our AR detector uniquely enables exploration of
AR-induced LHT in HighResMIP, since no ARTMIP High-
ResMIP experiment currently exists. Due to its increased res-
olution, HighResMIP offers a valuable test bed to explore
precipitation and the hydrological cycle.

In this work, we present the following advances in AR de-
tector uncertainty, CNN interpretability, and CNN generaliz-
ability:

1. We train ARCNNs to replicate the mean output of mul-
tiple AR detection algorithms in Sect. 2.1–2.3.

2. Using style transfer, we train ARCNNs to generalize
to a variety of input fields, resolutions, and datasets in
Sect. 2.4. Crucially, this generalization does not require
additional training labels.

3. We rigorously validate ARCNNs on an idealized cli-
mate dataset in which the correct answer is known ahead
of time in Sect. 3.

4. In Sect. 4, we use ARCNNs to assess the relationship
between ARs and poleward LHT while considering AR
detection uncertainty.

2 Training neural networks to detect atmospheric
rivers

We train ARCNNs to detect ARs in ERA 20th Century
Reanalysis (1° horizontal resolution) (Poli et al., 2016),
MERRA-2 reanalysis (0.5°× 0.625°) (Gelaro et al., 2017),
ERA-Interim (hereafter ERA-I) reanalysis (approximately
0.28°) (Dee et al., 2011), GridSat (gridded satellite data,
coarse-grained to 0.28°) (Knapp et al., 2011), C20C+ CAM5
(0.25°) (Stone et al., 2019), and the ECMWF-IFS-HR High-
ResMIP climate model (0.5°) (Roberts et al., 2018). In
CAM5 and ECMWF-IFS-HR, we use historical forcings; the
simulations for these two models are named All-Hist and
highresSST-present, respectively. In MERRA-2, we detect
ARs in both IWV and IVT; in ECMWF-IFS-HR and ERA-I,
we detect ARs in IVT; and in GridSat, we detect ARs in the
brightness temperatures in the infrared window. We select
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these datasets because they allow us to detect ARs in a vari-
ety of different reanalysis products, models, input fields, and
resolutions. Using these datasets, we examine a truly gen-
eralizable framework for detecting ARs. Satellite data could
enable real-time meteorological analysis of global AR risks,
ERA 20th Century Reanalysis includes information about
long-term trends from 1900–present, high-resolution climate
reanalyses enable the study of localized AR impacts, and cli-
mate models can be used to study future changes in ARs. We
summarize the ARCNNs we train in Table 1, and we explain
the choice of loss function in Sect. 2.3 and 2.4.

2.1 The AR consensus index (ARCI)

To systematically assess AR detection uncertainty, the At-
mospheric River Tracking Method Intercomparison Project
(ARTMIP) (Shields et al., 2018; Rutz et al., 2019; O’Brien
et al., 2022) is a campaign to compare a variety of AR de-
tection algorithms across a common set of reanalyses and
climate simulations. For AR identification, these algorithms
prescribe thresholds in integrated vapor transport (IVT), in-
tegrated water vapor (IWV), length–width ratio, and/or mini-
mum area. Xu et al. (2020) propose using heuristics from im-
age processing to detect ARs without requiring thresholds in
integrated water vapor and integrated vapor transport; how-
ever, they still use thresholds in minimum area, maximum
area, and length–width ratio.

In the ARTMIP Tier 1 experiment, the algorithms detect
ARs in 3 h MERRA-2.0 reanalysis (Global Modeling And
Assimilation Office and Pawson, 2015; Rutz et al., 2019).
Using the detections from 14 ARTMIP algorithms, we as-
semble the atmospheric river consensus index (ARCI). We
list the algorithms in Appendix C. ARCI represents the frac-
tion of ARTMIP algorithms that identify a specific horizon-
tal grid cell and time step as falling within an AR. It is ob-
tained by averaging the binary maps output from each algo-
rithm (1 if the grid cell is in an AR; 0 otherwise). In this
way, ARCI is a measure of consensus among ARTMIP algo-
rithms. In Fig. 3, we visualize ARCI at a sample time step.
ARs emerge as long, narrow columns of moisture transport.
To resolve the spread among ARTMIP algorithms, one so-
lution could be a simple majority vote. However, many of
the ARTMIP algorithms are correlated, as they use similar
thresholds in IWV, IVT, or area size. Therefore, detections
from different ARTMIP algorithms are not independent, and
a majority vote for AR detection may result in a misleading,
statistically unsound picture of ARs. Since some ARTMIP
algorithms are only designed for specific regions, ARCI is
defined to represent the proportion of algorithms that were
run on a given grid cell. Some detection algorithms use lat-
itude bounds, such that these features appear primarily in
the midlatitudes. While some detection algorithms do iden-
tify ARs in the tropics, most algorithms treat them as extrat-
ropical phenomena associated with poleward moisture trans-
port (Zhu and Newell, 1998; Guan and Waliser, 2015; Nash

et al., 2018; Newman et al., 2012) and midlatitude dynamics
(Lora et al., 2020; Zhang et al., 2019; Gimeno et al., 2014;
Ralph et al., 2018; Dacre et al., 2015). Shields et al. (2022)
demonstrate that global ARTMIP algorithms may not cor-
rectly identify ARs in polar regions, such as the ice sheets in
East Antarctica; they note that Antarctic-specific AR detec-
tion tools are necessary for these regions. Therefore, in this
work, we focus on midlatitude ARs and their associated heat
transport.

2.2 The neural network

We train an ARCNN to identify ARs, using the ARCI dataset
as training labels. Since these labels include a measure of AR
confidence, the ARCNN preserves an estimate of detector
uncertainty in its AR detection. This is a unique benefit of our
training setup. Because the CNN is making a prediction for
each grid cell, this learning objective is known as semantic
segmentation.1

We use the DeepLabv3+ CNN architecture (Chen et al.,
2018), implemented in PyTorch (Paszke et al., 2019), be-
cause of its strong performance in semantic segmenta-
tion tasks on several computer vision datasets (Wu et al.,
2020). Additionally, this architecture is explicitly designed
for learning at multiple scales. It uses atrous convolutions, in
which convolution filters are applied over fields of view with
multiple sizes. In computer vision, Chen et al. (2017) intro-
duce this method to detect multiscale information in a dataset
of vehicles, household objects, and animals. We speculate
that atrous convolutions make this architecture well-suited
for AR detection in climate datasets with different spatial
resolutions. ClimateNet (Prabhat et al., 2021) also uses the
DeepLabv3+ architecture for AR detection in CAM5. Here,
we extend the use of DeepLabv3+ for probabilistic, rather
than binary, AR detection with ARCI in MERRA-2.

For the CAM5 experiment (Experiment 5 in Table 1), we
train on the sixth ensemble member (run006) from 1995–
2005. Due to memory limitations, we test on the year 1995 of
the eighth ensemble member (run008); this year was chosen
arbitrarily. We are training and testing on different ensem-
ble members, which diverge due to sensitive dependence on
initial conditions. Therefore, the test dataset is a proper out-
of-sample evaluation of the ARCNN. Regarding all the other
experiments in Table 1, the years 1980–2019 were avail-
able for the MERRA-2 dataset, 2006–2017 were available for
ERA-I and GridSat, 1950–2014 were available for ECMWF-
IFS-HR, and 1980–2010 were available for ERA 20th Cen-
tury Reanalysis. The validation dataset is composed of the
years 1982, 1993, 2004, 2009, and 2011; the test dataset is

1Other learning objectives include classification, where the
CNN makes one prediction for the entire input field, and bound-
ing box detection, where the CNN learns to draw bounding boxes
around objects of interest in an image. Liu et al. (2016) classify
cropped regions of global simulations as AR or not AR, and Racah
et al. (2017) draw bounding boxes around ARs in global input fields.

Geosci. Model Dev., 17, 3533–3557, 2024 https://doi.org/10.5194/gmd-17-3533-2024



A. Mahesh et al.: ARCNNv1 3537

Table 1. Description of ARCNN experiments.

Labeled training datasets Unlabeled training datasets Loss function Generalization
capability

Experiment 1 MERRA-2 IWV MERRA-
2 IVT

None Perceptual loss Input fields

Experiment 2 GridSat brightness
temperatures

None Perceptual loss Input fields

Experiment 3 MERRA-2 IVT ERA 20th
Century IVT

None Perceptual loss Resolutions

Experiment 4 MERRA-2 IVT ERA-I IVT None Perceptual loss Resolutions

Experiment 5 MERRA-2 IVT ERA-I IVT CAM5 IVT Semi-supervised style
transfer

Labeled and unlabeled
datasets

Experiment 6 MERRA-2 IVT ERA-I IVT ECMWF-IFS-HR IVT Semi-supervised style
transfer

Labeled and unlabeled
datasets

Figure 3. Example of the atmospheric river consensus index (ARCI). ARCI (black and white shading) refers to the proportion of 14 AR
detection algorithms that identify an AR. ARCI ranges from 0 (none of the AR detection algorithms identified an AR) to 1 (all algorithms
identified an AR). ARCI is at the same time step as Fig. 1.

composed of the years 1984, 1997, 2003, 2010, and 2015
(if available). These years were chosen arbitrarily. For each
dataset, the remaining years were used for training. The val-
idation and test years are interspersed with the training years
to account for possible changes in the characteristics of ARs
during the historical record. In machine learning, the valida-
tion and test datasets are meant to be out-of-sample tests for
the CNN. Since atmospheric datasets are highly correlated
on timescales of O(10) d, our training, validation, and test
sets are in yearly blocks rather than being selected randomly
among all available time steps. If we chose the train set, test
set, and validation set by random shuffling of all time steps,
then elements of the latter two sets would be highly corre-
lated with the training data. This would corrupt the valida-
tion and test datasets, and they would no longer be an out-of-
sample test for the neural network. Using random shuffling
could lead to artificially high performance on the validation

and test sets because they would not be reliable indicators of
the CNN’s performance.

Two stages of the machine learning pipeline are training
and inference. During training, the CNN’s parameters are op-
timized to learn the relationship between the input and the
ARCI labels. With a batch size of two, we train each ARCNN
using one NVIDIA GTX 1080 Ti GPU with 11 GB memory.
For each ARCNN, training takes roughly 24 h. In machine
learning, the training dataset is often augmented and per-
turbed to synthetically increase the size of the training dataset
(Wong et al., 2016). During training, we augment the input
to the ARCNNs; with 50 % probability, we multiply the in-
put by a random factor between 0.92 and 1.08, and with 50 %
probability, we uniformly add a constant to the input field.
The constant is sampled uniformly between −15 and 15 mm
for IWV, between−175 and 175 kg m−1 s−1 for IVT, and be-
tween−9 and 9 K for GridSat brightness temperatures. As an
additional form of data augmentation, we degrade the reso-
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lution of the input field by a factor of 2 or a factor of 4, with
33 % probability for each. With 33 % probability, we do not
degrade the resolution.

During inference, the CNN’s weights are frozen, and the
CNN can generate AR detections. For inference, we inte-
grate the CNN into an open-source package called the Toolkit
for Extreme Climate Analysis (TECA v4.0.0) (Prabhat et al.,
2015, 2012; Burlen Loring et al., 2022) (https://github.com/
LBL-EESA/TECA, last access: 17 April 2024). With TECA,
the CNN can be deployed on large climate datasets in paral-
lel and can efficiently leverage high-performance computing.
Using 1484 nodes on the Cori supercomputer at the National
Energy Research Scientific Computing Center (NERSC),
TECA generated AR detections in 280 GB of ECMWF-IFS-
HR IVT. Each node uses Intel’s Xeon Phi Knights Landing
processor, with 68 cores and 96 GB per node.

2.3 Extending the neural networks to different input
fields and resolutions

Using an optimization algorithm and a training dataset,
CNNs approximate a function that transforms the input field
into the labels. Machine learning algorithms use data to learn
the relationship between the input and the labels. On the
other hand, ARTMIP algorithms use explicit programming;
experts manually define and implement a set of heuristics and
thresholds to detect ARs. In this study, the majority of the
ARTMIP algorithms rely on IVT thresholds for AR identi-
fication. Additionally, in the ARCI dataset we create, all the
ARTMIP algorithms are tuned and run on MERRA-2. We
use CNNs to replicate ARCI in different input fields and his-
torical datasets, with 3 h 0.5°× 0.625° MERRA-2 IWV; 3 h
0.25° ERA-I IVT (Dee et al., 2011); 3 h 1° ERA 20th Cen-
tury Reanalysis IVT (Poli et al., 2016); and the 3 h brightness
temperatures in the infrared window from gridded satellite
data (GridSat), which are coarse-grained to ERA-I resolu-
tion (Knapp et al., 2011). Our goal is to use the labels from
existing heuristic algorithms to detect ARs in a variety of res-
olutions and fields.

In this section, we train the neural network using the ARCI
dataset as the labels. For each ARCNN, we use a variety of
datasets as possible input fields, summarized in Table 1. We
use bilinear interpolation to regrid the ARCI labels to the
resolution of the input field. CNNs are powerful function ap-
proximators. In Experiment 1 in Table 1, we train one AR-
CNN to detect ARs in either IWV or IVT. We trained our
CNN by selecting at random, and with equal probability, ei-
ther the IVT or IWV fields as input in a given training pass.
We visualize the detections in IWV in Fig. 4. Despite the ma-
jor differences between these fields, the CNN reliably detects
ARs, regardless of which field is used as input.

In Experiment 2 of Table 1, we explore AR detection in
satellite images. Currently there exist only a few methods of
detecting ARs in satellite observations, and these methods
do not leverage the wind fields or moisture transport for their

detection (Neiman et al., 2008; Ralph et al., 2004). Our train-
ing setup with CNNs enables replication of the full ensemble
of ARTMIP algorithms to infrared satellite observations. In
Fig. 4, we illustrate the ARCNN’s detections in GridSat.

Through the Adam optimization algorithm (Kingma and
Ba, 2014), with a learning rate of 10−5, the CNN finds the
optimal set of weights that minimize a loss function, L. L
quantifies the difference between the DeepLabv3+ predic-
tions and the ARTMIP labels. To train a CNN that can reli-
ably detect ARs in multiple resolutions, we explore different
loss functions. One option for L is a pixel-wise cross-entropy

L=
k∑
i=1

yi log(ŷi), (1)

where k is the number of grid cells, y is the label (ARCI),
and ŷ is the CNN AR detection. This is a pixel-wise loss
function because the prediction is compared to the label at
each grid cell or pixel. Johnson et al. (2016) demonstrate
that a pixel-wise loss function often yields subpar results. In-
stead, they propose a perceptual loss function. Rather than
comparing the predictions to the AR labels grid cell by grid
cell, a perceptual loss function compares a low-dimensional
representation of the labels to a low-dimensional representa-
tion of the detections of the CNNs. This loss function is less
noisy and susceptible to changes in individual pixels. To jus-
tify perceptual loss functions, Johnson et al. (2016) use the
following analogy: if ŷ was shifted by 1 pixel from y, then
the pixel-wise cross-entropy loss would be considerable, but
a perceptual loss function would be low.

To extract the low-dimensional representation from the la-
bels and predictions, the perceptual loss function itself uti-
lizes another CNN. We call this neural network the loss neu-
ral network, and we refer to the low-dimensional representa-
tion extracted by the loss neural network as features. Thus,
perceptual loss functions involve two separate neural net-
works, namely (1) the ARCNN and (2) the loss neural net-
work. The ARCNN is the DeepLabv3+ CNN being trained
to detect ARs; its weights are being updated to minimize the
loss function. The loss neural network has frozen weights; it
is only used to extract a low-dimensional representation from
the predictions and labels. The loss neural network is a gen-
eral feature extractor, pre-trained on a large dataset of images
called ImageNet (Deng et al., 2009), and it uses a standard ar-
chitecture, called VGGNet (Simonyan and Zisserman, 2014).

Let φ denote the features extracted by the loss neural net-
work and y denote the ARCI labels. φ(y) has the shape
C×HW , where C denotes the number of convolutional fil-
ters in that layer of the architecture, H denotes the height of
the features, and W denotes the width of the features. H and
W are determined by the architecture of the loss neural net-
work and the resolution of the input.H andW correspond to
the dimensions of the compressed representation of the input.
A perceptual loss function is composed of two components:

L= Lcontent+Lstyle. (2)

Geosci. Model Dev., 17, 3533–3557, 2024 https://doi.org/10.5194/gmd-17-3533-2024
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Figure 4. CNN-based AR detections in MERRA-2 IWV and GridSat predictions. (a) MERRA-2 IWV and (b) the infrared window of GridSat
at the same time step as Figs. 3 and 1. (c) CNN AR detections from MERRA-2 IWV and (d) CNN AR detections from GridSat.

Figure 5. CNN-based AR detections in ERA-I IVT and ERA 20th Century Reanalysis. (a) ERA-I IVT and ERA 20th Century Reanalysis
IVT (b) at the same time step as Figs. 3 and 1. (c) CNN AR detections from ERA-I IVT and (d) CNN AR detections from ERA 20th Century
Reanalysis. ERA-I has a 0.25°× 0.25° spatial resolution, while ERA 20th Century Reanalysis has 1°× 1° resolution.

Content loss, Lcontent, is designed to encourage the AR de-
tection network to correctly locate ARs. Content loss is the
squared norm between the features of the predictions and the
truth.

Lcontent = ||φ(y)−φ(ŷ)||
2, (3)

where ŷ refers to the ARCNN’s predictions.
Style loss, Lstyle, is designed to ensure that the predictions

of the AR detection network have the correct stylistic char-
acteristics as the labels. These characteristics are represented
by a Gram matrix G, where G(y)= φ(y)φ(y)T. According
to Johnson et al. (2016), the Gram matrix can be interpreted
as the C×C covariance matrix between the C-dimensional
features extracted by the loss neural network. Style loss min-
imizes this covariance of the labels and of the prediction

Lstyle = ||G(y)−G(ŷ)||2. (4)

Lstyle operates on Gram matrices, which always have the
shape C×C, regardless of the resolution of the input. The

value of C is determined by the architecture of the loss neu-
ral network, VGGNet. On the other hand, Lcontent operates on
φ, which has the shape C×HW .H andW change, based on
the resolution of the input. Similarly, a pixel-wise loss func-
tion relies on the resolution of the input dataset, since each
grid cell in the prediction is compared to each grid cell of
the input. As in Sect. 4 of Johnson et al. (2016), we calcu-
late style loss using the features extracted from the first four
layers of the loss neural network, and we calculate feature
reconstruction loss from the second layer of the loss neural
network.

Since Lstyle is independent of the input resolution, it pro-
vides the flexibility to train a CNN to detect ARs across
resolutions. In Fig. 5, we visualize the predictions in ERA
20th Century Reanalysis and ERA-I at the same sample
time step. One ARCNN was trained on MERRA-2 and ERA
20th Century Reanalysis (Experiment 3 in Table 1), and the
other ARCNN was trained on MERRA-2 and ERA-I (Exper-
iment 4). These ARCNNs have learned to detect ARs in in-
put datasets with different resolutions, as their AR detections
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Figure 6. CNN-based AR detections with and without perceptual loss. CNN AR detections in 0.25° ERA-I at the same time as Figs. 1–4 (a)
with a perceptual loss function and (b) with a pixel-wise cross-entropy loss function.

match the labels from the ARCI dataset (Fig. 3). In Fig. 6,
we demonstrate the utility of perceptual loss functions. With
a pixel-wise loss function, a CNN trained to predict ARs
in MERRA-2 (0.5° horizontal resolution) and ERA-I (0.25°
horizontal resolution) greatly overpredicts AR probabilities
in the latter. This overprediction occurs despite the fact that
both datasets are used in training; the pixel-wise loss func-
tion does not enable effective learning across resolutions. For
learning across resolutions, the pixel-wise loss function may
have subpar performance because different resolutions have
different numbers of grid cells (i.e., pixels for the CNN). The
detections from a CNN trained with a pixel-wise loss func-
tion (Fig. 6b) are consistently larger than those from ARCI
(Fig. 3). In particular, the CNN in Fig. 6b overpredicts ARs
in the tropical Pacific, and the midlatitude ARs have a larger
area compared to Fig. 3. Using a perceptual loss function, the
detections (Fig. 6a) are very similar to those in Fig. 3. The
detected ARs have a similar spatial extent and covariance to
the ARs from ARCI. Thus, a perceptual loss function enables
an ARCNN to detect comparable ARs in the MERRA-2 and
ERA-I datasets, despite their different spatial resolutions. We
note that the ARCNN was trained with both MERRA-2 and
ERA-I. It has not learned to generalize to a new dataset that
it has not seen in training; rather, the perceptual loss func-
tion enables the ARCNN to learn most effectively from the
different resolutions in the training dataset.

One artifact of using the perceptual loss function is that
an unphysical checkerboard pattern appears in the detected
ARs. This pattern is a known byproduct of the deconvolu-
tional layers of the CNNs, which convert features (which are
a low-dimensional representation of the input) into the pre-
dictions (Aitken et al., 2017; Odena et al., 2016). Addition-
ally, the pattern could also be caused by the fact that the loss
neural network was trained on ImageNet. ImageNet images
are all the same resolution (224× 224), and this resolution is
also different from the variety of climate dataset resolutions
used here. Further research is necessary to characterize the
exact origin of the checkerboard pattern. The pattern is most
visible in Fig. 5d in detections in ERA 20th Century Reanal-
ysis, but it is also visible in higher-resolution AR detections
(Figs. 4c, d, and 6a). Because the loss function is crucial to
enabling detection across datasets, we conclude that its ben-
efits outweigh the disadvantage of the introduced pattern. In
particular, the checkerboard variations are roughly an order

of magnitude smaller than the AR detections themselves, so
the detected ARs are still clearly discernible. The ARCNNs
trained with perceptual loss functions are extensively vali-
dated using a semantic segmentation metric (Sect. 2.5), an
idealized model (Sect. 3), and a comparison of AR-induced
heat transport in ARCNN predictions and ARCI (Sect. 4).

2.4 Extending the neural networks to climate models
using style transfer

When applying neural networks to climate datasets, a central
challenge concerns generalization to new climate datasets
and scenarios (Reichstein et al., 2019; Beucler et al., 2021).
CNNs are exceptionally good at interpolation in which they
are applied to scenarios similar to the training dataset, but
they are poor at extrapolating to new scenarios. To ad-
dress this challenge, we use style transfer to generalize the
ARCNNs. Our goal is to train ARCNNs to reliably detect
ARs in climate reanalyses and climate models without re-
quiring time-intensive intercomparisons for each new cli-
mate dataset. We use style transfer to extend the ARCNN
to climate simulations in which the ARCI dataset does not
have a labeling campaign. In this way, style transfer en-
ables the CNNs to be highly transferable across datasets;
it enables training on datasets with labels (historical re-
analyses) and datasets without labels (free-running climate
simulations). As in the previous section, style transfer still
requires training on input from unlabeled climate simula-
tion; it does not enable an ARCNN to detect ARs on a
dataset entirely unseen during training. Using style trans-
fer, we train a CNN to detect ARs in the European Cen-
tre for Medium-Range Weather Forecasts climate simulation
(Roberts et al., 2018) for the High-Resolution Model Inter-
comparison Project (HighResMIP) (Haarsma et al., 2016)
and 0.25° C20C+ simulation with the Community Atmo-
sphere Model v5 (Neale et al., 2010; Stone et al., 2019).
These refer to Experiments 5 and 6 in Table 1.

This problem formulation is a form of semi-supervised
learning in which the CNN must learn to detect ARs in
both labeled datasets (MERRA-2) and unlabeled datasets
(ECMWF-LS-HR or C20C+ CAM5). On the other hand,
in supervised learning, a CNN learns to detect ARs by only
learning from labeled data. Let Dl refer to a labeled dataset
(e.g., MERRA-2), and letDu refer to an unlabeled dataset. A
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supervised perceptual loss function would be

Lsupervised = LDl preds,label
style +LDl preds,label

content , (5)

where the superscripts denote the datasets on which L is cal-
culated. This supervised loss function just calculates the style
loss and content loss on a labeled dataset. With this super-
vised loss function, a supervised model trained on ERA-I
does not generalize well to ECMWF-IFS-HR due to the fun-
damental differences between climate models and reanalysis.
Free-running climate models rely on numerical simulation of
the atmosphere and ocean, while reanalysis incorporates ob-
servations and data assimilation from in situ measurements.
Therefore, a neural network trained on the reanalysis cannot
generalize or extrapolate to a climate simulation. This can
be seen in Fig. 7. The CNN’s detections on ECMWF-IFS-
HR (Fig. 7d) are significantly lower than the ARCI labels
on MERRA-2 (Fig. 7b). While ECMWF-IFS-HR is funda-
mentally a different data product than MERRA-2, it is rea-
sonable to expect that ARs in ECMWF-IFS-HR should be
relatively common, even if the exact spatiotemporal pattern
does not exactly match in these two datasets. However, there
is an order of magnitude difference between AR detections
in the two datasets. This suggests that the AR detector is not
generalizing to a new dataset. Additionally, the CNN does
not appear to be underpredicting ARs in a spatially uniform
manner. In the Northern Hemisphere, there appears to be a
markedly higher probability of ARs over the Atlantic than
the Pacific, but this difference does not exist in the ARCI la-
bels of Fig. 7b.

To address this lack of generalization, we convert the loss
function from a supervised loss to a semi-supervised loss.
A supervised loss only learns from labeled data, but a semi-
supervised loss learns from both labeled and unlabeled data.
We add another term to the loss function: a style loss be-
tween the MERRA-2 ARCI labels and the predictions of the
ARCNNs on an unlabeled dataset.

Lsemi-supervised = LDl preds,Dl label
style +LDl preds,Dl label

content

+LDu preds,Dl label
style (6)

The additional loss term, LDu preds,Dl label
style , represents the

style loss between the predictions on the unlabeled dataset
and the labels on the labeled dataset. By definition, on an
unlabeled dataset, there are no labels to learn from. To
overcome this challenge, in unlabeled datasets the semi-
supervised loss encourages the network to make predictions
that have similar feature Gram matrices as those of ARCI
labels.

In Fig. 7, we demonstrate that the semi-supervised train-
ing scheme improves the quality of AR detections in un-
labeled ECMWF-IFS-HR simulations. This corresponds to
the ARCNN used in Experiment 6 in Table 1. With the
supervised training loss, the neural network is consistently

underconfident (Fig. 7d), and its detected AR probabili-
ties are consistently lower than those from ARCI. How-
ever, with a semi-supervised training scheme, the AR detec-
tions in ECMWF-IFS-HR (Fig. 7c) have a similar magni-
tude and spatial pattern to the ARCI labels (Fig. 7b). There-
fore, the semi-supervised style loss addresses this consis-
tent underconfidence and more accurately identifies ARs in
both hemispheres. To summarize the training scheme pre-
sented in Sect. 2.3 and 2.4, we include a schematic diagram
in Fig. B1. This diagram displays the role of labeled and un-
labeled datasets in the loss function.

Using style transfer to generalize a CNN to new datasets
is grounded in machine learning theory. Li et al. (2017) show
that style transfer is a form of domain adaptation, which
“aims to transfer the model that is learned on the source do-
main to the unlabeled target domain”. Their derivation shows
that style transfer minimizes the maximum mean discrep-
ancy (MMD) between a sample in the source domain and
a sample in the target domain. MMD is a metric that quan-
tifies the difference between the distributions underlying the
two samples. By minimizing the MMD, style transfer aligns
the feature distributions of the ARCNN predictions in the
source and target domains. This is precisely our goal for us-
ing style transfer; we want to ensure that AR detections in
the source domain (MERRA-2) have the same feature distri-
bution as those in the target domain (historical climate sim-
ulations). Style transfer is a computationally efficient way to
integrate this distribution alignment directly into the train-
ing of the ARCNN. In the field of computer vision, Atapour-
Abarghouei and Breckon (2018) use style transfer for a simi-
lar purpose; they generalize a neural network across synthetic
data and real-world data.

We apply style transfer and the resulting distribution align-
ment to historical reanalysis and the historical scenario of cli-
mate model simulations. We do not use style transfer on ARs
in future climate simulations with different emissions scenar-
ios. This would artificially constrain AR detections to have
the same Gram matrices in historical and future datasets. This
behavior is not necessarily accurate, as O’Brien et al. (2022)
find notable changes to future intensity and size of ARs. In
order to explore future changes in ARs, an ARCNN trained
with style transfer on a historical simulation could be applied
to a future simulation. Then, changes in AR frequency and
intensity between the historical and future simulations could
be explored.

2.5 Assessing the performance and robustness of
neural networks

Using the experiment setup described above, we train six
different ARCNNs. Each is trained with a different input
dataset, field, or combination thereof. We evaluate the per-
formance of the ARCNNs using the intersection over union
(IoU) score. IoU is calculated as the intersection between
the ARCNN predictions and the ARCI labels divided by the
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Figure 7. December–February (DJF) ARCNN detections with and without style transfer. (a) ARCNN detections in MERRA-2. This ARCNN
was trained to detect ARs in MERRA-2 using either IWV or IVT as input. (b) ARCI labels on MERRA-2. (c) ARCNN (trained with style
transfer) in ECMWF-IFS-HR. (d) ARCNN (trained without style transfer) detections in ECMWF-IFS-HR. (a–d) All figures show the DJF
average during the years of the test dataset (1984, 1997, 2003, and 2010).

union of those two quantities. For calculation of this met-
ric, we binarize ARCNN predictions and labels at 0.67. This
metric ranges from 0 (worst) to 1 (best). We refer the reader
to Prabhat et al. (2021) for an in-depth discussion and visual-
ization of the IoU score between CNN predictions and labels.
The IoU metric is commonly used to evaluate CNNs for se-
mantic segmentation (Chen et al., 2018), and it has been used
in prior work on CNN-based AR detection (Prabhat et al.,
2021; Kurth et al., 2018). In Fig. 8, we show the IoU scores
for ARCNNs trained and evaluated on different combina-
tions of climate datasets. The x axis of Fig. 8 corresponds
to Experiments 1–5 in Table 1. In all cases, the IoU scores of
the ARCNNs surpass 0.65, and as shown by the sample out-
puts (Figs. 4–7), the ARCNN predictions closely match those
of the ARCI labels (see Fig. 3 for an instantaneous snapshot
and Fig. 7a for a time mean).

In addition, we show that the performance of the ARC-
NNs is robust to perturbations of the input field. We perturb
the input field by multiplying it by factors ranging from 0.9
to 1.1 in increments of 0.02. For each perturbation, we calcu-
late the ARCNN’s mean IoU score across all samples on the
test dataset, resulting in 11 IoU scores. In Fig. 8, the spread
of these 11 IoU scores, indicated by the box and whiskers, is
relatively small for each CNN. Despite these perturbations,
each neural network’s IoU score remains almost constant.
This is an important quality for an AR detector, and exist-
ing work has found that for threshold-based AR detection al-
gorithms, AR area can be sensitive to changes in parameters
(Newman et al., 2012), and Reid et al. (2020) show how AR
count changes as a function of different thresholds in IVT.

Figure 8 illustrates the ability of the neural networks to
probabilistically detect ARs across fields, resolutions, and
datasets. First, Fig. 8 demonstrates that neural networks can
detect ARs across fields. We train one neural network, la-
beled “MERRA-2 IWV, IVT”, to detect ARs regardless of

the input field (IWV or IVT); this network is Experiment 1
in Table 1. During training, this CNN sees 50 % of its train-
ing set as IWV data and 50 % as IVT data. This CNN’s out-
puts were discussed and visualized earlier, in Sect. 2.3 and
Fig. 4c. The high IoU scores, between 0.75 and 0.8, illustrate
the ability of the CNN to detect ARs across fields.

Many of the AR detection algorithms submitted to ART-
MIP require the IVT field, as this field can readily be sub-
jected to a threshold for AR detection. This field is not rou-
tinely saved in climate model simulations, so its calculation
requires substantial disk storage and RAM to calculate the
required integral from the 3-dimensional wind and water va-
por fields. Unlike IWV and GridSat, the calculation of IVT
requires zonal and meridional wind at all pressure levels and
times. We can successfully train neural networks to detect
ARs in fields such as IWV and GridSat (Fig. 4). Therefore,
we conclude that even though these fields lack information
regarding atmospheric dynamics, they still contain the core
identifiable properties of an AR. Figure 8 shows that CNNs
can still reliably detect ARs in IVT, IWV, and GridSat.

Second, Fig. 8 demonstrates networks can detect ARs
across resolutions. A network trained on MERRA-2 and
ERA-I can successfully identify ARs across the resolu-
tions of both datasets, with an IoU score of approximately
0.72. This represents an important advantage of our training
schema. Collow et al. (2022) show that a prior CNN trained
without semi-supervised style transfer has significant differ-
ences when run on different reanalyses.

Finally, Fig. 8 demonstrates that our experimental setup
can train CNNs that detect ARs across datasets. Using only
MERRA-2.0 AR labels as training data, the CNN success-
fully identifies ARs in CAM5 (Experiment 5 in Table 1)
and ECMWF-IFS-HR (Experiment 6 in Table 1) by leverag-
ing the semi-supervised perceptual loss function above. After
training on unlabeled CAM5 as input, we validate the CNN’s
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Figure 8. Performance of ARCNNs on different climate datasets and input fields. Five ARCNNs are trained on different datasets and input
fields, as shown on the x axis. Their performance is measured by IoU (with 0 being the worst and 1 being the best) on different test datasets.
The IoU scores are the average of the IoU for the foreground class (AR) and background class (not AR). On each test dataset, the input field
is multiplied by a factor ranging from 0.9 to 1.1 in increments of 0.02, and the IoU score is calculated. For the resulting 11 IoU scores, the
box shows the lower and upper quartile, and the whiskers show the minimum and maximum of the IoU scores. All IoU scores are on test set
years of 1984, 1997, 2003, 2010, and 2015.

predictions on CAM5 AR detections obtained from the ART-
MIP High Resolution Tier 2 (Shields et al., 2023); we val-
idate on the year 1995 of the eighth ensemble member of
CAM5 All-Hist. These CAM5 labels are only used for val-
idation of the trained neural network; they are not used for
training. Figure 8 shows the results for five trained ARCNNs
(Experiments 1–5 in Table 1). A sixth ARCNN is trained
using style transfer to detect ARs in ECMWF-IFS-HR (Ex-
periment 6 in Table 1). Since there are no ARTMIP cata-
logs available for this dataset, its IoU score cannot be calcu-
lated. However, the time mean spatial patterns of the detected
ARs broadly match those of the ARCI labels, as discussed in
Sect. 2.4.

By detecting ARs in different climate datasets and fields,
the ARCNNs cannot have learned to simply replicate the
threshold-based detection algorithms on which they were
trained. For instance, a threshold-based algorithm in IVT will
not generalize to IWV, and vice versa, because these quan-
tities represent different quantities with different magnitudes
and spatial statistics. However, these ARCNNs are more gen-
eralizable AR detectors that have learned to recognize AR
patterns in multiple fields.

3 An idealized dynamical test to validate the neural
network

In Sect. 2.5, we assess the robustness of ARCNNs by com-
paring them to ARCI labels. However, since they rely on un-
certain heuristic algorithms, they do not serve as an unam-
biguous ground truth of AR detections. Additionally, CNNs
have millions of learned weights (Wu et al., 2020), which
poses a significant challenge for their interpretability and
trustworthiness. For these two reasons, it is vital to vali-

date the claim that ARCNNs make the right detections for
the right reasons. We test the ARCNNs using an idealized
model, where the correct AR detections can be rigorously
determined. We design an experiment in which ARs should
be responsible for the overwhelming majority of vapor trans-
port in both the zonal and meridional directions.

We test the CNN on AR-like filamentary structures in an
idealized climate simulation based upon a dry, single-layer
model. This is a simulation of shallow-water layer, with a ba-
sic state depth of 10 000 m. The simulation is initialized with
a barotropically unstable jet stream, as defined in Galewsky
et al. (2004), and a passive tracer in the tropics, between
22.5° N and 22.5° S. The Galewsky et al. (2004) initial con-
dition uses perturbations to the geopotential height field to
induce the barotropic instability. To create multiple AR-like
structures, we initialize the height field with five perturba-
tions (each defined by Galewsky et al., 2004) equidistant
across the 45° latitude circle. To induce flow in both hemi-
spheres, we mirror the Galewsky et al. (2004) initial condi-
tion about the Equator, such that there is a barotropically un-
stable jet in both the Northern and Southern hemispheres. We
implement and run this simulation using the SHTns Python
package (Schaeffer, 2013). The governing equation of the
simulation is conservation of the quasi-geostrophic potential
vorticity (QGPV) in the QGPV equation. However, we re-
lax the beta-plane assumption in the quasi-geostrophic equa-
tions, and we define the Coriolis parameter f as 2�sinθ ,
where� is the rotation rate of the Earth, and θ is latitude. The
simulation is run at 0.625× 0.625° horizontal resolution. The
full simulation and simulation parameters can be run using a
single Python file in our open-source code repository (see
the “Code and data availability” section for more details).
The full simulation uses implicit diffusion and a fourth-order
Runge–Kutta numerical scheme.
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Figure 9. Snapshot of the idealized simulation. (a) Integrated water
vapor, (b) integrated vapor transport, and (c) wind speed are visual-
ized. In this single-layer idealized simulation, water vapor is a pas-
sive tracer. Rossby waves in the midlatitude jet streams lead to the
formation of AR-like filamentary structures, which are responsible
for all the water vapor transport outside the tropics.

In our simulation, water vapor is a passive tracer, and there
are no interactions between water vapor and the flow field.
Due to the barotropic instability, we can unequivocally iden-
tify the formation of a Rossby wave in each jet stream. This
wave generates turbulent stirring and filamentary structures
that are qualitatively consistent with the Zhu and Newell
(1998) (ZN98) definition of an AR (a long, narrow filament
of moisture). In Fig. 9, we include a snapshot after the AR-
like features have formed. IWV, IVT, and wind speed are
shown in the snapshot, and an animation of the full simu-
lation can be seen at the following link: https://youtube.com/
watch?v=7Gq7e5PIRio (last access: 17 April 2024). Due to
the simulation’s idealized nature, all the water vapor trans-
port in the extratropics is due to the AR-like filamentary
structures. In order to pass our test, we expect that ARCNN’s
identifications should be responsible for the vast majority of
the vapor transport in the extratropics. In Fig. 10, we test
whether the ARCNN’s identifications are consistent with this
expectation. For this test, we use the MERRA-2 IWV, IVT
ARCNN, which is trained on both IWV and IVT. Figure 10a
shows the ARCNN predictions binarized at 0.5. (Because

this simulation is highly idealized, we binarize the CNN pre-
dictions and do not consider detector uncertainty.) Figure 10a
and b show that ARs account for virtually all the vapor trans-
port in the midlatitudes. As shown in Fig. 10b, at the lati-
tude of peak transport in the Northern Hemisphere, ARs ac-
count for 95 % of IVT, and at the latitude of peak transport
in the Southern Hemisphere, ARs account for 98 % of total
transport. Additionally, the detections in Fig. 10a identify the
filamentary structures as ARs. Thus, the ARCNN identifica-
tions are consistent with our expectations in this idealized
dataset. By testing the CNN in a context in which we know
the right answer, we have more confidence in its operations
on more complex datasets, such as historical reanalysis and
high-resolution climate models.

4 Poleward latent heat transport induced by
atmospheric rivers

In Sects. 2 and 3, we validated the ARCNN detections on
ARCI labels and on an idealized simulation. In this section,
we use the generalizable CNN to study the role of ARs in
the climate system; specifically, we explore the relationship
between ARs and poleward latent heat transport. To further
validate the ARCNN, we test that it has the same estimates
of AR-induced poleward LHT as the ARCI dataset. Also, we
calculate AR-induced LHT in ECMWF-IFS-HR for which
there are no ARCI labels available.

At each latitude, there is an imbalance between absorbed
solar radiation and outgoing longwave radiation (Hartmann,
2016). This imbalance results in a surplus of energy input
in the tropics and a deficit of energy input in the extratrop-
ics and polar regions. To maintain energy balance, energy is
transported meridionally (in the north–south direction), and
the net meridional transport is poleward in both hemispheres
(Peixoto et al., 1992). This energy takes the form of latent
heat, sensible heat, and geopotential energy. Here we investi-
gate the relationship between ARs and meridional latent heat
transport (LHT), which is defined as

LHT=
2πacos(θ)

g

ps∫
0

Lv[qv]dp. (7)

Lv is the latent heat of vaporization, a is the radius of the
Earth, and θ is latitude. The overline indicates the time mean
(during the test set years), and the square brackets indicate
the zonal mean.

In their original paper on ARs, Zhu and Newell (1998)
(ZN98) find that ARs are responsible for more than 90 % of
meridional moisture flux in the extratropics. Using a newer
detection algorithm with relative thresholds and geometric
constraints, Guan and Waliser (2015) and Nash et al. (2018)
also reach a similar conclusion. Newman et al. (2012) de-
fine AR conditions as positive low-level wind anomalies and
positive moisture anomalies. Under this definition, they find
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Figure 10. Validating the CNN’s AR detections on an idealized simulation. (a) Integrated vapor transport in the idealized simulation. The
CNN’s AR detections are shown with the red contours. (b) Zonal mean of panel (a), showing total IVT and AR-induced IVT.

that ARs are the primary regions of extratropical moisture
transport, confirming the claim put forth by ZN98. During
the winter, meridional LHT is dominated by transient eddies
(Trenberth and Solomon, 1994), and since ARs are transient
phenomena associated with extratropical cyclones and warm
conveyor belts (Ralph et al., 2020), they are likely an impor-
tant mechanism related to these transient eddies.

Using Eq. (7), we calculate total poleward LHT within the
detected ARs. Shields et al. (2019) calculate LHT associated
with landfalling ARs in western North America, the Iberian
Peninsula, and the United Kingdom. We extend upon Shields
et al. (2019) by assessing the role of all ARs and not just land-
falling ones; this extension enables exploration of the role of
ARs in maintaining energy balance in the climate system.

In Fig. 11, we show that AR-induced poleward LHT varies
widely for different levels of ARTMIP consensus. More per-
missive levels of ARCI (e.g., a value of 0.1 or 10 % consen-
sus) indicate that ARs account for virtually all the total LHT.
At many latitudes, ARs even surpass the total LHT. While
total LHT includes both a poleward and equatorward LHT,
ARs are primarily associated with the poleward component;
the magnitude of total LHT may thus be smaller than the
magnitude of AR-induced LHT. With higher levels of ART-
MIP consensus, such as 80 %, ARs only play a small role in
total meridional LHT (Fig. 11a and b). Because of the large
variation in AR-induced poleward LHT, detector uncertainty
plays an important role in ZN98’s conclusion on the role of
ARs in moisture flux. These results are in line with Newman
et al. (2012). Using two AR detection algorithms available
at the time, Newman et al. (2012) (hereafter referred to as
N12) note that AR size and spatial extent are sensitive to the
choice of subjective parameters and thresholds in an AR de-
tection algorithm. This sensitivity poses a major challenge
for assessing meridional moisture transport induced by ARs.

As consensus increases, the spatial extent of ARs signif-
icantly decreases. (We visualize this for a sample time step
in Fig. 1 in which global coverage of ARs changed signif-
icantly as AR consensus increased.) This change in spatial
extent causes the wide variation in estimates of AR-induced
LHT. If the detected ARs account for a small portion of the
globe, then their implied LHT will also be small. In Fig. 11a,

b, and c, we calculate a “best estimate”. We weight the pole-
ward LHT fields by the probabilistic AR detections. In effect,
this gives an estimate of AR-induced LHT while taking de-
tector uncertainty into account. In this estimate, each detector
is weighted evenly. Using the best estimates, ARs account for
the majority of the poleward LHT near its peak in the mid-
latitudes.

An important benefit of our training setup is the explo-
ration of detection uncertainty. Using the ARCI dataset, as
opposed to binary AR detection labels, enables this capa-
bility. The CNN-based estimates of AR-induced meridional
LHT are consistent with those from the ARCI dataset. Fig-
ure 11a is very similar to the analogous quantities from
ARTMIP (Fig. 11b). Since these quantities are calculated on
the years in the ARCNN’s test set, the similarity between
Fig. 11a and b serves as further validation of the ARCNN’s
performance. The similarity between these figures indicates
that the ARCNN is correctly replicating the spread of AR
detections from different detectors in ARCI.

In Fig. 11b, we use the ARCI dataset to show how AR de-
tector uncertainty affects estimates of AR-induced latent heat
transport. The best estimate, 10 % consensus threshold, and
80 % consensus threshold lines in Fig. 11a are very similar to
those of the ARCNN (Fig. 11b). Since both figures cover the
years in the ARCNN’s test dataset, this serves as further val-
idation of the ARCNN. Its predictions closely match those
from ARCI.

The contributions of ARs to poleward LHT are largely
consistent across MERRA-2 and ECMWF-IFS-HR, as
shown by the similarity of Fig. 11b and c. In the midlatitudes,
ECMWF-IFS-HR and MERRA-2 have similar amounts of
poleward LHT. Additionally, the ARCNN detections show a
large variation in AR-induced total meridional LHT between
consensus thresholds of 80 % and 10 %. One notable differ-
ence between ECMWF-IFS-HR and MERRA-2 is that the
former has larger poleward transport at the southern edge of
the Hadley cell, at approximately 22° S (Fig. 11a and c). This
difference is related to how ECMWF-IFS-HR resolves the
Hadley cell and the mean meridional circulation (not shown),
so it is likely not related to ARs. Additionally, peak LHT
near 40° N is about 25 % smaller in ECMWF-IFS-HR than in
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Figure 11. DJF AR contributions to poleward latent heat transport (LHT). AR contributions to poleward LHT in DJF for the test dataset years
(1984, 1997, 2003, and 2010) in (a, b) MERRA-2 and (c) ECMWF-IFS-HR. To calculate AR-induced LHT, (a) uses ARCNN detections,
and (b) uses the ARCI labels. AR-induced LHT is shown at consensus levels of 0.1 (dashed green line) and 0.8 (dashed blue line). The best
estimate (dashed yellow line) of AR-induced LHT is the poleward LHT multiplied by ARCI, effectively weighting LHT by AR detection
confidence.

MERRA-2, with a similar difference at 45° S. This is another
difference between the high-resolution climate model and the
historical climate reanalysis; see Donohoe et al. (2020) for
a detailed comparison of meridional heat transport between
CMIP5 models (which are lower resolution than ECMWF-
IFS-HR) and reanalysis. Understanding the reason for these
differences is out of the scope of this study.

5 Discussion and conclusions

ARs serve a crucial role in the climate system, and they
have significant consequences for human systems. Here,
we train multiple CNNs to detect ARs in different climate
datasets (gridded satellite data, three reanalyses (MERRA-2,
ERA-Interim, and the ERA 20th Century Reanalysis), and
output from two climate models (ECMWF’s HighResMIP
high-resolution IFS dataset and a 0.25° horizontal resolution
CAM5)); different physical variables (IWV, IVT, and bright-
ness temperature); and multiple horizontal resolutions (rang-
ing from 0.25 to 1.25°). These detections of the ARCNNs en-
code detector uncertainty because they are trained on the AR
consensus index. Because they generalize to new datasets,
they enable studying ARs in a variety of contexts. We com-
pare detections from ARCNNs and ARCI using metrics such
as IoU (Fig. 8), the spatial patterns of AR frequency (Fig. 7),
and AR-induced latent heat transport (Fig. 11a and b). To val-
idate the claim that the ARCNN is getting the right answer
for the right reason, we use an idealized simulation. We de-
sign a shallow-water simulation in which we expect virtually
all the vapor transport to be attributed to AR-like features.
The detections of the ARCNNs are consistent with this ex-
pectation.

In this study, we consider uncertainty due to the choice
of ARTMIP detector. We do not consider the uncertainty
introduced by the CNNs themselves. The CNN uncertainty
can be caused by the choice of CNN architecture, optimiza-
tion method, and weighted initialization (Gawlikowski et al.,
2021; Gal and Ghahramani, 2015), among other factors. Fu-
ture research is necessary to explore this source of uncer-
tainty. This would enable a detailed decomposition of the
ARCI uncertainty and the uncertainty from the CNNs them-
selves.

The ARCNNs presented here enable analysis of ARs in a
variety of climate datasets, including those without associ-
ated ARTMIP labeling campaigns. With style transfer, AR-
CNNs can scale to new datasets without requiring new AR
labeling campaigns. These labeling campaigns serve as a sig-
nificant bottleneck, as they require expensive time from ex-
perts to hand-draw ARs or retune ARTMIP algorithms for
new datasets. In Fig. 8, we show the performance of five
different ARCNNs; each ARCNN enables a specific form
of generalization. For instance, one ARCNN detects ARs in
IWV and IVT, a different ARCNN detects ARs in MERRA-
2 and ERA-I, another detects ARs in ECMWF-IFS-HR and
ERA-I, and so on. Future work is necessary to train one
ARCNN to perform all forms of generalization across in-
put fields, resolutions, and datasets. Such an ARCNN could
be readily applied to large numbers of climate data, and
its performance could be even more generalizable than the
ones presented in this work. In particular, this could enable
AR training and detection in the full multimodel ensemble
of HighResMIP. Training this ARCNN would require more
computational power than was available in this study. We
only used one GPU for training, and we had to use a small
batch size (two training samples per batch) due to GPU mem-
ory limitations. A larger batch size would make it possible
to iterate through the training data faster. With more GPUs
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available in high-performance computing centers, it would
be possible to train an ARCNN on large numbers of data and
parallelize the training in a distributed fashion (Kurth et al.,
2018; Sergeev and Del Balso, 2018).

Here, our ARCNN generalizes to different inputs, but an
important future avenue concerns training on different labels.
ClimateNet (Prabhat et al., 2021; Kapp-Schwoerer et al.,
2020) includes hand-drawn AR detections by experts, and
O’Brien et al. (2020b) assemble a dataset of AR counts
by experts. Future work is necessary to adapt the semi-
supervised framework introduced here to ARCNNs trained
on those datasets. With future ARCNNs that replicate hand-
identified ARs on large datasets, it would be possible to quan-
tify detector uncertainty in threshold-based AR detectors,
hand-drawn AR detectors, and manual AR counts. These la-
beled datasets are heterogeneous. ClimateNet includes hand-
drawn AR contours on a historical simulation of C20C+
CAM5, and the ARCI dataset is available on MERRA-
2. There are additional threshold-based labels available on
C20C+ CAM5, CMIP5, and CMIP6 through additional
ARTMIP experiments. The size of these datasets varies sig-
nificantly. ClimateNet includes hand-drawn AR contours on
300 time stamps, whereas the ARTMIP catalogs are several
orders of magnitude larger. It would be a fruitful machine
learning exercise to combine these heterogeneous labels and
data sources into training one ARCNN. In particular, this ef-
fort could leverage advances in learning under noisy labels
(Song et al., 2020).

In this article, we use ARCNNs to explore the role of ARs
in the climate system. While ZN98 find that ARs are respon-
sible for virtually all the extratropical moisture flux, we find
that AR detector uncertainty plays a significant role in this
conclusion. For a given level of detector consensus, there
is significant variation in the contribution of ARs to pole-
ward LHT (Fig. 11). While ARCI provides a best estimate
of AR contributions to LHT, the underlying detection algo-
rithms use correlated thresholds in IVT or length scale; the
algorithms are not independent. Therefore, a simple major-
ity vote (51 % consensus) may not be the most appropriate
estimate of AR-induced latent heat transport. Further investi-
gation of the relationship between ARs, transient eddies, and
meridional LHT is necessary. By understanding and charac-
terizing the relationship between these phenomena, in future
work, we plan to develop a physically grounded reference
quantity for AR-induced LHT. With this quantity, it would
be possible to constrain the suite of ARTMIP algorithms or
develop a weighted ARTMIP ensemble. Additionally, this
quantity could also be incorporated into the training of the
CNN directly. The CNN could be trained to identify ARs
based on the ARCI training dataset but with an additional
constraint – its identified ARs must match a given reference
quantity about AR-induced poleward energy transport. In or-
der to train the CNNs in this way, it would be useful to lever-
age methods from physically informed machine learning in
climate science (Kashinath et al., 2021).

Ultimately, these ARCNNs can be used to study how ARs
will change in the future. Further research is necessary to
use the ARCNN on future scenarios of climate models. The
AR detections from an ARCNN trained with style transfer
could be compared to AR detection algorithms used in the
ARTMIP Tier 2 Intercomparison, which uses existing AR
detectors on CMIP5 and CMIP6 climate models. Through
considerations of CNN uncertainty, AR detector uncertainty,
and climate model uncertainty, future research is necessary to
explore rigorously how ARs and their contributions to LHT
will change in the future. Additionally, future research is nec-
essary to consider the role of ARs in sensible heat transport
in present and future climates.

In machine learning for climate science, a major chal-
lenge is that neural networks must generalize to new climate
datasets and scenarios (Reichstein et al., 2019; Beucler et al.,
2021). Machine learning (ML) has been used to emulate pro-
cesses such as atmospheric convection (Rasp et al., 2018;
O’Gorman and Dwyer, 2018; Beucler et al., 2020) and ra-
diative transfer (Cachay et al., 2021); to detect phenomena
such as weather fronts (Dagon et al., 2022), thunderstorms
(Molina et al., 2021), and clouds (Schulz et al., 2020); and to
forecast climate responses to various forcings (Watson-Parris
et al., 2022). Also, ML offers a promising avenue for assim-
ilating heterogeneous modeled and observed datasets (Geer,
2021; Brajard et al., 2021; Gettelman et al., 2022), many of
which are at a range of resolutions and complexities (Scher
and Messori, 2019; Yuval and O’Gorman, 2020; Yuval et al.,
2021). In all these research areas, machine learning needs
to generalize to out-of-sample or out-of-distribution data. As
ML is increasingly deployed in climate-related fields, it is
crucial that ML models maintain accurate performance on a
variety of climate scenarios or datasets. Style transfer, a form
of domain adaptation, can be a useful tool in this generaliza-
tion. In Appendix B, we include a guide and link to a tutorial
(with code) explaining how to apply the methods introduced
here to other problems in climate and atmospheric science.

Another priority in applying neural networks to climate
datasets is trustworthy and explainable AI (XAI). Mamalakis
et al. (2022b) have developed statistical benchmarks to eval-
uate different XAI methods. XAI has been used to study pre-
cursors to El Niño (Ham et al., 2019; Toms et al., 2020),
the mechanisms of extreme precipitation (Davenport and
Diffenbaugh, 2021), and subseasonal prediction (Mayer and
Barnes, 2021). To explore these scientific research areas, a
hierarchy of climate models can be used to evaluate CNN in-
terpretability. In atmospheric science, the rich hierarchy of
climate models make them a ripe testing ground to evaluate
CNNs.

We conclude that style transfer and a model hierarchy are
two key tools in this study used to generalize and validate
ARCNNs. These two tools are broadly applicable to a va-
riety of research in machine learning in climate science. In
this work, we use them to address the shortfalls of exist-
ing heuristic and CNN-based detectors. We present a rigor-
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ously validated, generalizable AR detector that preserves un-
certainty introduced by the ensemble of AR detection algo-
rithms. Style transfer, climate model hierarchies, and latent
heat transport offer a promising path forward to reduce the
spread in AR detections. This will enable more confident es-
timates of future changes in AR frequency and intensity as
the climate changes.

Appendix A: Explanation of threshold-based AR
detector from AR textbook

In the Atmospheric Rivers textbook (Ralph et al., 2020),
ARs are defined as objects above 250 kg m−1 s−1 of IVT and
20 mm of IWV, with a length scale of at least 2000 km. We
define the length scale as the distance along the diagonal of
the bounding box of the identified AR. This definition is sim-
ilar to that of Goldenson et al. (2018), who define the AR
length as the distance between the northeast and southwest
corner of an AR.

Figure A1 shows that the overlap between the regions
above 250 kg m−1 s−1 and 20 mm (Fig. A1c) is relatively
small. Thus, the identified object does not meet the mini-
mum length scale for an AR, and the algorithm misses the
AR. The IWV threshold causes the algorithm to miss the part
of the AR that makes landfall because that region is just un-
der 20 mm of IWV. The IVT threshold causes the algorithm
to miss the southern tip of the AR originating in lower lati-
tudes.

There could be other ways of defining the AR length
scale. For instance, Guan and Waliser (2015) calculate the
length along the major axis of the AR. Because the re-
gion where both IWV> 20 mm and IVT> 250 kg m−1 s−1

(Fig. A1c) is small, it is likely that other length scale defi-
nitions would also subset out this feature. The distance be-
tween the southwest and northeast corner of the AR is ap-
proximately 1600 km, well under the minimum length scale
of 2000 km. Even if some length scale definitions would cal-
culate this as an AR, the identified region misses crucial as-
pects of the AR, such as the section that makes landfall in
southeast Alaska and northwest Canada.

Figure A1. Further info on the textbook algorithm. In panel (a), the IVT is at the same time as in Fig. 2. The dashed red contour shows the
region above 250 kg m−1 s−1. Panel (b) shows IWV. The dashed red contour denotes the region above 20 mm. Panel (c) shows IWV, and the
dashed red line denotes the region above both 250 kg m−1 s−1 and 20 mm.
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Appendix B: How to apply style transfer to other
problems in climate and atmospheric science

In order to use the AR detectors trained here, the Toolkit for
Extreme Climate Analysis (TECA, https://teca.readthedocs.
io/en/latest/, last access: 17 April 2024) can be deployed for
AR detection in parallel. TECA includes support for GPU-
and CPU-based extreme climate event analysis on high-
performance computing machines; it fully leverages paral-
lel computing to perform AR detections in parallel across
many time steps of large datasets. Additionally, we make
the learned weights of our ARCNNs, which we trained us-
ing PyTorch, open-source. Using PyTorch and these learned
weights, it can be possible to readily run our trained AR de-
tectors; the AR detectors do not have to be retrained from
scratch.

Additionally, in this paper, we present a semi-supervised
framework for learning across domains, including different
models, datasets, input fields, and resolutions. In a semi-
supervised framework, the CNN is learning from both la-
beled data and unlabeled data. To apply this framework to
a new problem in climate and atmospheric science, we rec-
ommend the following process:

1. Identify the labeled dataset. Each sample in this dataset
is composed of an input–label pair, and the neural net-
work learns to approximate the function to transform
the input into the label. Here, our labeled datasets were
from MERRA-2, ERA-I, GridSat, and ERA 20th Cen-
tury Reanalysis.

2. Identify the unlabeled dataset. In this article, our unla-
beled dataset is the ECMWF-IFS-HR model. Through
this semi-supervised framework, the goal is to train a
CNN that performs well on the unlabeled dataset, even
though no labels are available.

3. Change the loss function. Commonly, in supervised
learning contexts, the loss function only minimizes the
error between the CNN’s predictions and the labels. In
this semi-supervised learning framework, the loss func-
tion minimizes the content loss and style loss between
the input and labels, and it minimizes an additional style
loss between the predictions on the unlabeled dataset
and the labels. This ensures that the Gram matrix of a
compressed representation of the CNN’s predictions is
the same on the labeled dataset and unlabeled dataset.
See Fig. B1 for a diagram of these loss functions.

In order to apply this framework to new problems in atmo-
spheric science, the primary change is to the loss function, as
described in step 3 above. Along with the code to run our
experiments, we also provide a sample Python tutorial under
the tutorials folder in our code repository. We include
a Jupyter notebook tutorial of how to use the loss functions
presented here. Using Python code, this tutorial explains how
to implement semi-supervised style transfer. We intend this
tutorial to be of use in applying these methods to other re-
search problems in climate and atmospheric science.
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Figure B1. Training scheme diagram. This diagram illustrates the training scheme used to teach a neural network to identify atmospheric
rivers in labeled climate datasets (Dl) and unlabeled climate datasets (Du). A climate dataset is labeled if there are pre-identified ARs (such
as ARCI) available. For the labeled climate datasets, the AR detection neural network minimizes the content loss between its predictions and
the labels and the style loss between its predictions and the labels. On unlabeled climate datasets, the AR detection neural network minimizes
the style loss between its predictions and labels from the labeled dataset.

Appendix C: ARTMIP algorithms

For the ARCI dataset on MERRA-2, ERA-I, ERA 20th
Century Reanalysis, and GridSat, we use the following
algorithms to assemble the ARCI dataset from ARTMIP
Tier 1 (Shields, 2018): gershunov (Gershunov et al., 2017),
lora_global, lora_npac (Lora et al., 2017), rutz (Rutz et al.,
2014), ppnl1_hagos (Hagos et al., 2015), pnnl2_lq (Leung
and Qian, 2009), goldenson (Goldenson et al., 2018), mund-
henk (Mundhenk et al., 2016), payne (Payne and Magnus-
dottir, 2015), connect500 (Sellars et al., 2015), connect700,
walton, guan_waliser (Guan and Waliser, 2015), and tempest
(Ullrich and Zarzycki, 2017; McClenny et al., 2020). To vali-
date the performance on MERRA-2, ERA-I, ERA 20th Cen-
tury Reanalysis, and GridSat, we use these ARTMIP algo-
rithms in our IoU score calculation.

Using style transfer, we train an ARCNN to detect ARs
in CAM5. This ARCNN was not trained directly on ART-
MIP labels in CAM5; rather, it used the semi-supervised
learning framework described in Sect. 2.4. After the model
was trained, we compared the ARCNN’s detections with
ARTMIP algorithms gershunov (Gershunov et al., 2017), lo-
rav2 (Lora et al., 2017), goldenson (Goldenson et al., 2018),
payne (Payne and Magnusdottir, 2015), tempest_IVT250
(Ullrich and Zarzycki, 2017; McClenny et al., 2020), tem-
pest_IVT500, and tempest_IVT700. Not all algorithms used
for ARCI on MERRA-2 were run on CAM5. Therefore, to
validate the performance on the CAM5 dataset, we calcu-
lated the IoU between the prediction and the truth using these
available datasets.

The ARTMIP catalogs (Shields, 2018) are organized by an
ARTMIP algorithm identifier. The identifier of the algorithm
used is provided above.
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Code and data availability. The file directory listing can be
viewed at https://portal.nersc.gov/archive/home/a/amahesh/www/
GMD_ARCNNs/ (Mahesh, 2024). Please note that the files are
stored on tape, so there may be delays associated with retrieving the
files from the tape filesystem. We have made nine datasets open-
source:

1. the ARCI labels on MERRA-2 IWV at https:
//portal.nersc.gov/archive/home/a/amahesh/www/GMD_
ARCNNs/artmip_probabilistic_labels_all_vars.tar (last
access: 28 April 2024);

2. the ARCI labels on MERRA-2 IVT (same link as above);

3. The ARCI labels on GridSat at https://portal.nersc.gov/archive/
home/a/amahesh/www/GMD_ARCNNs/GRIDSAT.tar (last
access: 28 April 2024);

4. the ARCI labels on ERA-I IVT at https://portal.nersc.
gov/archive/home/a/amahesh/www/GMD_ARCNNs/era_
probabilistic_labels.tar (last access: 28 April 2024);

5. the ARCI labels on ERA 20th Century Reanalysis IVT
at https://portal.nersc.gov/archive/home/a/amahesh/www/
GMD_ARCNNs/era_20cr.tar (last access: 28 April 2024);

6. ARCNN detections in MERRA-2 IVT at https:
//portal.nersc.gov/archive/home/a/amahesh/www/GMD_
ARCNNs/merra2_nn_preds.tar (last access: 28 April 2024),
with these predictions using the ARCNN Experiment 1 in
Table 1;

7. ECMWF-IFS-HR IVT at https://portal.nersc.gov/
archive/home/a/amahesh/www/GMD_ARCNNs/
HighResMIP-ECMWF-IFS-HR_IVT.tar (last access:
28 April 2024);

8. ARCNN detections in ECMWF-IFS-HR IVT at
https://portal.nersc.gov/archive/home/a/amahesh/www/
GMD_ARCNNs/ecmwf-ifs-hr_nn_preds.tar (last access:
28 April 2024). These predictions use the ARCNN Experi-
ment 6 in Table 1; and

9. the idealized single-layer simulation at https://portal.
nersc.gov/archive/home/a/amahesh/www/GMD_ARCNNs/
idealized_ar.tar (last access: 28 April 2024).

At the Zenodo DOI (https://doi.org/10.5281/zenodo.7814401,
Mahesh et al., 2023), we also provide open-source code for the fol-
lowing four tasks: our code to run the Atmospheric Rivers textbook
threshold algorithm, our code to train the ARCNNs, our code to run
the idealized climate simulation, and a tutorial of how to use our
loss function and models. We recommend the tutorial as a starting
point for users to understand how to use the loss function to train
their own CNN.

We also made the learned parameters open-source for the follow-
ing six trained ARCNNs: one for MERRA-2 (using either IWV or
IVT as input); one for GridSat (using the brightness temperatures in
the infrared window); one for ERA-I (using IVT as input); one for
ERA 20th Century Reanalysis (using IVT as input); one for C20C+
CAM5 (using IVT as input); and one for ECMWF-IFS-HR (using
IVT as input). In the above tutorial, we include instructions on how
to load the model (using PyTorch) and generate AR detections with
it. These are available at the above Zenodo repository under the
ar_segmentation_tutorial/trained_models folder.

Video supplement. We provide a visualization of the
shallow-water simulation on YouTube for convenience
at https://youtube.com/watch?v=7Gq7e5PIRio (last access:
25 April 2024). For archival purposes, the video is also stored at
https://doi.org/10.5281/zenodo.7806480 (Mahesh, 2023).
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