Articles | Volume 17, issue 6
https://doi.org/10.5194/gmd-17-2347-2024
https://doi.org/10.5194/gmd-17-2347-2024
Review and perspective paper
 | Highlight paper
 | 
21 Mar 2024
Review and perspective paper | Highlight paper |  | 21 Mar 2024

Advances and prospects of deep learning for medium-range extreme weather forecasting

Leonardo Olivetti and Gabriele Messori

Related authors

Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather and GraphCast
Leonardo Olivetti and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2024-1042,https://doi.org/10.5194/egusphere-2024-1042, 2024
Short summary

Related subject area

Atmospheric sciences
Diagnosing drivers of PM2.5 simulation biases in China from meteorology, chemical composition, and emission sources using an efficient machine learning method
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024,https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Validation and analysis of the Polair3D v1.11 chemical transport model over Quebec
Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou
Geosci. Model Dev., 17, 3579–3597, https://doi.org/10.5194/gmd-17-3579-2024,https://doi.org/10.5194/gmd-17-3579-2024, 2024
Short summary
Assimilation of GNSS tropospheric gradients into the Weather Research and Forecasting (WRF) model version 4.4.1
Rohith Thundathil, Florian Zus, Galina Dick, and Jens Wickert
Geosci. Model Dev., 17, 3599–3616, https://doi.org/10.5194/gmd-17-3599-2024,https://doi.org/10.5194/gmd-17-3599-2024, 2024
Short summary
Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024,https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Assessing acetone for the GISS ModelE2.1 Earth system model
Alexandra Rivera, Kostas Tsigaridis, Gregory Faluvegi, and Drew Shindell
Geosci. Model Dev., 17, 3487–3505, https://doi.org/10.5194/gmd-17-3487-2024,https://doi.org/10.5194/gmd-17-3487-2024, 2024
Short summary

Cited articles

Bahdanau, D., Cho, K., and Bengio, Y.: Neural Machine Translation by Jointly Learning to Align and Translate, in: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings, edited by: Bengio, Y. and LeCun, Y., https://doi.org/10.48550/arXiv.1409.0473, 2015. a
Balkema, A. A. and De Haan, L.: Residual Life Time at Great Age, Ann. Probab., 2, 792–804, https://doi.org/10.1214/aop/1176996548, 1974. a, b
Barnes, A. P., McCullen, N., and Kjeldsen, T. R.: Forecasting seasonal to sub-seasonal rainfall in Great Britain using convolutional-neural networks, Theor. Appl. Climatol., 151, 421–432, https://doi.org/10.1007/s00704-022-04242-x, 2023. a
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., and Pascanu, R.: Relational inductive biases, deep learning, and graph networks, arXiv, https://doi.org/10.48550/arXiv.1806.01261, 2018. a, b, c
Bauer, P., Dueben, P., Chantry, M., Doblas-Reyes, F., Hoefler, T., McGovern, A., and Stevens, B.: Deep learning and a changing economy in weather and climate prediction, Nat. Rev. Earth Environ., 4, 507–509, https://doi.org/10.1038/s43017-023-00468-z, 2023. a
Download
Executive editor
This article provides a concise and well-written review of the current state of numerical weather prediction using machine learning models. Given how quickly this field is evolving, it's difficult for the traditional peer review process to capture all developments in this space, but this manuscript provides an excellent snapshot of the current state of the art.
Short summary
In the last decades, weather forecasting up to 15 d into the future has been dominated by physics-based numerical models. Recently, deep learning models have challenged this paradigm. However, the latter models may struggle when forecasting weather extremes. In this article, we argue for deep learning models specifically designed to handle extreme events, and we propose a foundational framework to develop such models.