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Abstract. In recent years, deep learning models have rapidly
emerged as a stand-alone alternative to physics-based numer-
ical models for medium-range weather forecasting. Several
independent research groups claim to have developed deep
learning weather forecasts that outperform those from state-
of-the-art physics-based models, and operational implemen-
tation of data-driven forecasts appears to be drawing near.
However, questions remain about the capabilities of deep
learning models with respect to providing robust forecasts of
extreme weather. This paper provides an overview of recent
developments in the field of deep learning weather forecasts
and scrutinises the challenges that extreme weather events
pose to leading deep learning models. Lastly, it argues for the
need to tailor data-driven models to forecast extreme events
and proposes a foundational workflow to develop such mod-
els.

1 Introduction

The very first deep learning models for weather applications
date back to the 1990s (Schizas et al., 1991; Hall et al., 1999),
and extensive research on the use of deep learning models
for weather forecasting at a local scale (e.g. Zhu et al., 2017;
Li et al., 2018; Haidar and Verma, 2018) and for short-term
weather predictions (e.g. Klein et al., 2015; Qiu et al., 2017)
has been ongoing since the mid-2010s. More recently, deep
learning models have also been employed successfully as a
nowcasting tool for precipitation (e.g. Ravuri et al., 2021;
Espeholt et al., 2021) and as post-processing tools for nu-

merical weather forecasts (e.g. Grönquist et al., 2021; Silini
et al., 2022). However, it has only been in the last few years
that deep learning models have started to become competitive
as self-standing medium-range and subseasonal large-scale
forecasting tools. As late as 2021, in a popular review arti-
cle, Schultz et al. (2021) noted how deep learning research
in the field of meteorology “is still in its infancy” and un-
derscored that “a number of fundamental breakthroughs are
needed” before deep learning applications may compete with
physics-based weather forecasts.

Much has changed since then. From early 2022, at least
seven different research groups (Pathak et al., 2022; Bi et al.,
2023; Keisler, 2022; Lam et al., 2023; Chen et al., 2023a;
Nguyen et al., 2023; Chen et al., 2023b) claim to have devel-
oped deep learning models able to forecast key atmospheric
variables with greater accuracy than deterministic forecasts
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF), which are widely regarded as the leading
global numerical weather predictions. In addition to techni-
cal advances, a key contextual enabler of this explosive de-
velopment has been the contribution of “Big Tech” – major
private actors in the field of information technology (Bauer
et al., 2023). This has contributed to closing the gap be-
tween state-of-the-art deep learning, cutting-edge computa-
tional resources, and weather practitioners, and it has at-
tracted a larger number of machine learning experts to the
field. Although only one of several developments within ma-
chine learning, we argue for a crucial role of Big Tech in the
advent of the latest generation of large-scale deep learning
weather forecast models, which notably require larger com-
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putational resources and more specialised knowledge than
previous state-of-the-art models (Bi et al., 2023; Lam et al.,
2023).

Despite this astounding rise, deep learning models for
weather forecasting still face a number of challenges. Some
of these are well known. For example, deep learning ap-
proaches typically do not incorporate physical constraints
(Ren et al., 2021), which may lead to unphysical forecasts.
Furthermore, deep learning models usually produce deter-
ministic forecasts, making it hard to compute reasonable es-
timates of the uncertainty around their predictions (Schultz
et al., 2021). A less-studied challenge is that data-driven
models have limited capabilities with respect to extrapolat-
ing at the edge of their training range or beyond (Gutzwiller
and Serno, 2023). Thus, these models may not be as helpful
as numerical models for investigating future climates (Scher
and Messori, 2019a) and, more prominently, might struggle
with forecasting extreme weather events lying in the tails of a
meteorological variable’s distribution (Watson, 2022). If un-
addressed, the latter limitation is likely to hold back deep
learning models from becoming a credible alternative to nu-
merical, physics-driven forecasting models. Indeed, accurate
predictions and early warnings of extreme weather play a key
role in disaster prevention and mitigation (World Meteoro-
logical Organization, 2022; Merz et al., 2020) and are cru-
cial for several economically prominent activities, including
but not limited to the energy and insurance sectors (e.g. Kron
et al., 2019). Nonetheless, the pace of development of deep
learning weather prediction models continues to be rapid,
and a number of promising approaches are being developed
to address the above challenges (e.g. Hu et al., 2023; Bi et al.,
2023; Zhang et al., 2023; Cisneros et al., 2023; Guastavino
et al., 2022; Clare et al., 2021; Kashinath et al., 2021).

This article reflects on the rise of medium-range weather
forecasting with deep learning, the challenges currently be-
ing faced when forecasting extreme weather, and the future
perspectives opened by the latest research advances. We do
not consider in detail issues related to computing forecast
uncertainty estimates (Scher and Messori, 2021; Clare et al.,
2021) or incorporating physical reasoning in deep learning
models (Kashinath et al., 2021; Beucler et al., 2020), for
which we remand the reader to some recent review articles
discussing these topics (Molina et al., 2023; de Burgh-Day
and Leeuwenburg, 2023). We begin with a survey of re-
cent developments in the field of large-scale deep learning
weather prediction (DLWP), with a focus on the aforemen-
tioned models claiming to outperform deterministic state-of-
the-art numerical weather prediction models (Pathak et al.,
2022; Keisler, 2022; Bi et al., 2023; Lam et al., 2023; Chen
et al., 2023a; Nguyen et al., 2023; Chen et al., 2023b). Then,
we provide a technical justification of why those models
might struggle with predictions in the tails of the distribution,
namely, weather extremes. Last, we outline alternative ap-
proaches that may be employed in order to design deep learn-

ing models specifically tailored to extreme weather forecast-
ing.

2 Overview of DLWP models

2.1 Early DLWP efforts

The very first DLWP models were developed in the 1990s
(Schizas et al., 1991; Hall et al., 1999) and followed a “feed-
forward architecture” (Ivakhnenko and Lapa, 1965), a unidi-
rectional, non-recurrent structure in which the input is trans-
mitted through the network sequentially. Feed-forward neu-
ral networks (FNNs) are limited in treating spatial data,
due to their inability to leverage spatial patterns and their
large computational burden, which makes them unsuitable
for large datasets. For these reasons, FNNs were soon re-
placed by convolutional neural networks (CNNs; LeCun and
Bengio, 1995), which can learn spatial patterns and display
better scalability. Early meteorological applications of CNNs
had either a very local character (Zhu et al., 2017; Li et al.,
2018; Haidar and Verma, 2018) or were aimed at producing
nowcasts with lead times from a few minutes to a few hours
(Klein et al., 2015; Qiu et al., 2017).

A further step in the direction of today’s medium-range
DLWP models was taken with the adoption of recurrent neu-
ral network (RNN) architectures (Rumelhart et al., 1986;
Bengio et al., 1994; Bengio and Gingras, 1995) and, subse-
quently, long short-term memory (LSTM) models (Hochre-
iter and Schmidhuber, 1997). These follow the dynamical na-
ture of time-series data by making current observations of
the variable of interest depend on previous iterations of that
same variable. Thus, they provide an effective framework for
accounting for time dependencies in the data and produce
predictions on multiple timescales. However, due to their se-
quential, recursive nature, RNNs and LSTMs are hard to par-
allelise, preventing an effective exploitation of modern high-
resolution climate reanalysis datasets, such as ERA5 (Hers-
bach et al., 2020).

FNNs, CNNs, and RNNs/LSTMs are the cornerstones of
deep learning and were also the dominant supervised learn-
ing architectures within DLWP at the time that the review by
Schultz et al. (2021) was written. Since then, a number of
new architectures have been developed that address the limi-
tations of the classical models via a number of creative inno-
vations, often combining different elements of pre-existing
architectures. Here, we focus primarily on those deep learn-
ing applications that are most relevant to medium-range,
large-scale forecasting of weather extremes. Nonetheless, we
acknowledge that data-driven nowcasting and subseasonal
forecasting are both thriving fields of research with many po-
tential applications, including for extreme events (e.g. Chkeir
et al., 2023; Barnes et al., 2023; Civitarese et al., 2021).
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2.2 State-of-the-art DLWP

A common element of current global medium-range DLWP
models is the use of a large number of input variables (“fea-
tures”) at a high temporal and spatial resolution. This is in
contrast to older models that, to a large extent, relied on a the-
oretical understanding of atmospheric dynamics and feature
selection for the choice of a few atmospheric variables and
pressure levels (e.g. Dueben and Bauer, 2018; Weyn et al.,
2019). For example, Lam et al. (2023) include 6 input vari-
ables on 37 pressure levels, 5 inputs at single levels, and sev-
eral constant masks. Similarly, Bi et al. (2023) make use of
4 atmospheric variables at 13 pressure levels, 4 surface vari-
ables, and 3 constant masks.

The fact that the latest DLWP models make use of a larger
number of features than prior models may be partly ascribed
to (1) computational improvements and (2) deep learning
architectural developments. A key factor in this respect is
the encoder–decoder architecture (Kramer, 1991; Cho et al.,
2014). Encoders and decoders can be seen as two separate
neural networks connected to each other through a latent en-
coding vector. Here, “latent” refers to quantities inferred in-
directly from the input data. The aim of the first network is
to identify and compress (“encode”) into the encoding vec-
tor the most important features contained in the input data.
The aim of the second network is to upscale (“decode”) the
information encoded in the encoding vector until it reaches
the dimensionality of the desired output. The target output
can then either be the same as the input, perhaps with some
small variation (self-supervised problems, e.g. variational au-
toencoders), or different from the input in terms of timescale,
spatial resolution, or even actual features.

In DLWP, the target output is usually different from the
input, and encoders are mostly used to reduce the dimen-
sionality of the input and identify the key latent features.
This allows models to use very large input layers, namely,
many different atmospheric variables at several pressure
levels. Encoder–decoder architectures are used to this ef-
fect within cutting-edge global DLWP applications, such as
Keisler (2022), Lam et al. (2023), Bi et al. (2023), and Chen
et al. (2023a).

The encoder–decoder structure is also at the core of trans-
formers (Vaswani et al., 2017), a recent architectural innova-
tion allowing for efficient parallelisation of sequential data.
Transformers use a so-called attention mechanism (Bah-
danau et al., 2015), i.e. they compute a score for each ele-
ment in the input sequence which determines its relevance
for the associated decoding step. This removes the need for
sequential data intake, thereby enabling an effective utilisa-
tion of modern GPUs and TPUs for time-series data. This
represents a major improvement over classic RNNs, which
instead rely on serial arrangement to learn key features and
are, therefore, not easily parallelisable.

Recently, the use of transformers has been extended to
computer vision tasks as an alternative, or complement, to

CNNs. Dosovitskiy et al. (2020) propose the use of vision
transformers, which adapt transformers to visual tasks by in-
troducing an innovative preprocessing step: images are first
divided into patches of fixedN×N size and then run through
a flattening layer, so that each patch can be treated as a sepa-
rate token. Next, transformers are applied just as in sequential
tasks. This approach has been applied to weather forecasting,
for instance, by Pathak et al. (2022) and Bi et al. (2023), who
use flattened patches of 4× 4 pixels to apply transformers to
gridded meteorological data.

A distinct approach featured by several global DLWP
models is the use of graph neural networks (GNNs; Scarselli
et al., 2009). Classic CNNs implicitly assume regular grids,
in which the distance between points and the importance of
each point is fixed (Thuemmel et al., 2023). This assump-
tion is problematic in the case of global forecast models,
as climate variables are often provided on regular latitude–
longitude or reduced-Gaussian grids. Given that the Earth is
quasi-spherical, the distance between degrees of latitude is
greater at the Equator than at the poles, and even the length
of degrees of longitude varies slightly with latitude. GNNs,
unlike CNNs, allow for complex, quasi-spherical shapes. A
way to understand this is by drawing a parallel with Cartesian
and spherical coordinates. CNNs, similar to Cartesian coor-
dinates, assume a “flat” grid and, in the best case, may intro-
duce a weighting scheme not unlike the one of the β-plane,
whereas GNNs can model the relation between the nodes as
a complex polygon resembling a sphere.

The bearing of the architectural change from CNNs to
GNNs on forecast performance is still the object of debate,
and it is likely that it plays a larger role for global rather than
local-to-regional applications, given the greater variation in
the size of the grid cells in the former case. However, several
recent deep learning weather forecasting models have intro-
duced the use of GNNs to good effect. For instance, Keisler
(2022) and, more prominently, Lam et al. (2023) have made
use of GNNs to obtain accurate medium-range forecasts of
several key atmospheric variables, managing to outperform
the most accurate ECMWF deterministic forecasts available
at the time of their publication.

Other current approaches look at ways of accounting for
Earth’s quasi-spherical nature within a CNN framework,
without resorting to GNNs. Examples of this include spheri-
cal convolutions (Boomsma and Frellsen, 2017) and spher-
ical cross-correlations (Cohen et al., 2018). Recent work
by Scher and Messori (2023) showcases the advantages of
spherical and hemispheric convolutions over classic CNNs.
The authors compare models based on different architectures
using the WeatherBench dataset (Rasp et al., 2020) and show
that models incorporating spherical or hemispheric convo-
lutions produce more accurate medium-range forecasts of
the 500 hPa geopotential height (Z500) and 850 hPa tem-
perature (t850) than models featuring classic CNN architec-
tures. However, feature-rich and high-resolution applications
of this kind are still under development.
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Finally, we outline how recent medium-range DLWP mod-
els treat temporal information. Instead of trying to incor-
porate the time aspect directly into the model in the form
of extra features or channels, they account for the sequen-
tial nature of data through a dynamic approach, by using
the predictions generated by a given model time step as
the input for the next model time step. In other words, as
clearly stated by Chen et al. (2023a), they approximate the
forecast at time t , Y t = f (Y t−1

+Y t−2
+ . . .+Y 1) through

an autoregressive approach of order 1 (AR 1), namely, by
sequentially using the forecasts at the previous time steps:
Y t = f (Y t−1),Y t−1

= f (Y t−2), . . .,Y 2
= f (Y 1). A similar

approach is adopted by Lam et al. (2023), with the main dif-
ference being that the data generated by the previous two
forecasts are used as input for the latest forecast (AR 2).

If the focus is on a specific lead time, it is, however,
not clear whether this iterative approach always outperforms
training a model to make a single prediction at the chosen
lead time (Scher and Messori, 2019b). In this regard, Chen
et al. (2023b) show that producing a cascade of models fine-
tuned on different timescales can lead to improvements in
performance compared with a single model optimised on the
whole forecasting window.

An overview of the DLWP model developments over time
is provided in Figs. 1 and 2. Figure 1 summarises the evo-
lution of model architectures described in this section, while
Fig. 2 outlines the continuous improvements in the spatial
and temporal domains handled by DLWP models. The cur-
rent leading global DLWP models are systematically pre-
sented in Table 1, where we provide information on the
inputs, outputs, main architectural innovations, and perfor-
mance for extreme weather forecasts of each model.

3 Challenges and opportunities

3.1 Current challenges in DLWP

A common limitation of most large-scale DLWP applications
introduced so far is that they are not targeted in any spe-
cific way at extreme weather events; rather, their focus lies
on maximising the average skill of the forecasts. Typically,
machine learning models struggle to make accurate predic-
tions of extreme values, partly due to (1) the inherently lim-
ited training samples for extreme values and (2) the intrinsic
inferential challenges related to extrapolation. Given the key
role of accurate prediction and of early warnings for extreme
weather in disaster prevention and risk mitigation (World
Meteorological Organization, 2022; Merz et al., 2020), it
would be desirable for current DLWP applications to ded-
icate greater attention to forecast skill for extreme weather
(Watson, 2022).

As highlighted in Table 1, this problem is further exacer-
bated by the fact that many global DLWP papers provide no
or very limited diagnostics on the performance of their mod-

els for extreme weather scenarios (e.g. Keisler, 2022; Chen
et al., 2023a; Nguyen et al., 2023), making it hard to assess
their performance in those situations. Even those that do pro-
vide extreme weather diagnostics mostly focus on selected
variables and case studies, supplying no systematic overview
of how the models perform in the prediction of high-impact
surface extremes such as total precipitation or peak wind
gusts. Indeed, some state-of-the-art DLWP models, such as
Bi et al. (2023), do not even produce forecasts for those vari-
ables.

Watson (2022) suggests some simple measures that au-
thors could adopt to help readers evaluate whether or not
a machine learning model can provide robust forecasts of
extreme events: for instance, that all papers should include
scatterplots and quantile–quantile plots of forecasted vs. ob-
served values and that performance metrics computed only
on extreme values should complement classic metrics of av-
erage skill. A positive note since the release of Watson (2022)
is that several research groups have chosen to make the code
of their global models publicly available, making it possible
for third-party actors with enough computational resources
to implement and further test their models. For instance,
ECMWF has recently launched an experimental programme
running daily 10 d forecasts with 6-hourly time steps of the
models introduced by Pathak et al. (2022), Bi et al. (2023),
and Lam et al. (2023), whose forecasts are available to the
general public (ECMWF, 2023). Similarly, WeatherBench 2
(Rasp et al., 2024) provides additional scorecards and out-of-
sample predictions for several models included in Table 1.

Some key “inductive biases”, i.e. implicit assumptions of
the employed estimation techniques (Battaglia et al., 2018),
may also hamper the performance of current DLWP appli-
cations for extreme weather forecasting. Most global DLWP
models choose to minimise the overall mean-squared error
(L2) of the forecast, averaging over all grid points and time
steps of interest (Pathak et al., 2022; Keisler, 2022). The min-
imisation thus uses the conditional mean of the dependent
variable through space and time given the predictors, opti-
mising forecasts for mean rather than extreme values. Fur-
thermore, the use of L2 (and also L1, the mean absolute error,
used, for instance, by Bi et al., 2023, and Chen et al., 2023b)
implicitly assumes that, for any given variable, the distribu-
tion of the forecast error is symmetric, i.e. that it is possi-
ble to obtain both positive and negative errors of the same
magnitude, and that deviations from the modelled value in
the two directions are equally important. This is seldom the
case in weather forecasting. Many weather variables display
a high degree of autocorrelation and follow highly asymmet-
ric truncated distributions (e.g. peak wind speed or precipita-
tion), which in combination tend to produce non-asymmetric
error distributions (Hodson, 2022). Moreover, deviations of a
variable from its mean in one of the two directions can have
larger impacts on human societies than deviations in the other
direction (e.g. one would expect that severely underestimat-
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Table 1. Overview of recent global medium-range DLWP applications.

Reference(s) Inputs Tested outputs Main innovation Performance on extreme values

Pathak et al. (2022) Single level – T2m,
10m U, 10m V, SP,
MSLP, and IWV;
multiple levels – Z,
U , V , Q, and T

Z500 First paper with per-
formance comparable
to physics-based nu-
merical models; use
of vision transform-
ers (Dosovitskiy et al.,
2020)

Model evaluation on extreme quan-
tiles, tends to underestimate high
quantiles of 10 m zonal wind and total
precipitation; source code and trained
models available

Keisler (2022) Static – lsm and orog-
raphy; single level –
solar radiation; multi-
ple levels – Z, U , V ,
Q, and T

Z500, T850, wind
speed 500, and
RH700

Use of GNNs
(Battaglia et al., 2018)

Unknown; source code available

Bi et al. (2022, 2023) Single level – T2m,
10m U, 10m V, and
MSLP; multiple lev-
els – Z, U , V , Q, and
T

Z500, T500, Q500,
U500, V500,
Z850, T850, T2m,
10m U, and 10m V;
MSLP for cyclone-
tracking example

Three-dimensional vi-
sion transformer, hier-
archical temporal ag-
gregation to decrease
computational burden

Better than HRES in binary detec-
tion of T2m extremes at a 6 d lead
time despite the tendency to un-
derestimate their magnitude (Ben-
Bouallegue et al., 2023); more pre-
cise tracking of tropical cyclones than
HRES in a case study; source code
and trained models available

Lam et al. (2022, 2023) Static – lsm, orog-
raphy, lat, and long;
single level – T2m,
10m U, 10m V, MSLP,
TP, solar radiation,
h, and elapsed year
progress; multiple
levels – Z, U , V , W ,
Q, and T

Single level – T2m,
10m U, 10m V, and
MSLP; multiple
levels – Z, U , V ,
Q, and T

GraphCast,
GNN-based architec-
ture (Battaglia et al.,
2018); much larger set
of inputs and outputs
than predecessors

More precise tracking of cyclones and
atmospheric rivers than HRES at most
lead times; better or comparable to
HRES in binary detection of T2m ex-
tremes at 5 d; source code and trained
models available

Chen et al. (2023a) Single level – T2m,
10m U, 10m V, and
MSLP; multiple lev-
els – Z, U , V , RH,
and T

Z500, T500, U500,
V500, Z850, T850,
U850, V850, T2m,
10m U, and MSLP

Transformer with
encoder–fuse–decoder
architecture

Unknown; trained model available

Nguyen et al. (2023) Static – lsm and
orography; single
level – T2m, 10m U,
and 10m V; multiple
levels – Z, U , V , Q,
RH, and T

Designed to allow
for flexible outputs.
Included example –
Z500, T2m, T850,
and 10m U

Variable-level
embedding and vari-
able aggregation to al-
low for heterogenous
input datasets

Unknown; source code available

Chen et al. (2023b) Single level – T2m,
10m U, 10m V, MSLP,
and TP; multiple lev-
els – Z, U , V , RH,
and T

Z500, T500, U500,
V500, T850, T2m,
10m U, 10m V, and
MSLP

Cascade model archi-
tecture with separate
fine-tuning for differ-
ent forecasting win-
dows

Source code and trained model avail-
able; FuXi-Extreme, a version of the
model optimised for extreme weather,
currently under development (Zhong
et al., 2023)

The abbreviations used in the table are as follows: 10m U and 10m V denote the u wind and v wind at 10 m, respectively; lsm – land–sea mask; MSLP – mean sea-level pressure; RH –
relative humidity; Q – specific humidity; SP – surface pressure; T – temperature; IWV – integrated total column water vapour; U – u wind; V – v wind; Z – geopotential; TP – total
precipitation; lat – latitude; long – longitude; h – hour of the day; 2m – 2 m height; 10m – 10 m height; 500 – 500 hPa; 850 – 850 hPa; and HRES – ECMWF high-resolution
deterministic forecast.
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Figure 1. Evolution of deep learning weather prediction (DLWP) through time: from feed-forward neural networks to graph neural networks
and vision transformers.

ing the amount of rain in a flash-flood event would be more
harmful than incorrectly predicting rain on a dry day).

While the suggestions in Watson (2022), if implemented,
would go a long way in ensuring greater transparency and
credibility for DLWP forecasts of extreme weather, the chal-
lenges related to the extrapolation issue and inductive biases
still remain. The limited diagnostics provided by Pathak et al.
(2022) and Bi et al. (2022) suggest that their models per-
form reasonably well on extremes but also that they consis-
tently tend to underestimate their magnitude. Similarly, Ben-
Bouallegue et al. (2023) find that Pangu-Weather (Bi et al.,
2023) can provide high-quality binary forecasts of moder-
ately extreme temperatures but that it also tends to over-
smooth the prediction and underestimate the magnitude of
the largest cold and hot extremes.

Thus, we argue for the need for DLWP models explicitly
built to forecast extremes. These should make use of targeted
loss functions and produce robust predictions of all relevant
variables at or beyond the limits of their training range. In the
next section, we propose a schematic framework on which
to build such models. The aim here is to provide a general
foundation for such approaches, rather than discussing archi-
tectural details. Indeed, several of the architectures adopted
by the models in Table 1 and Sect. 2.1 are, in principle,
equally suitable for predictions of extreme weather and aver-
age weather. The limiting factors are most likely the choice of
the optimisation problem and the lack of a specific treatment
of the extremes, rather than the architectures themselves.
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Figure 2. Evolution of the largest geographical and temporal scales
of deep learning weather prediction (DLWP) models over time.

3.2 A DLWP workflow for extreme weather

A simple way of shifting the focus from the average skill of
a deep learning model to its performance in the tails of the
distribution is by changing its loss function. Common loss
functions, such as the mean absolute error (L1) and the mean-
squared error (L2), are minimised by taking the conditional
median and mean of the dependent variable, respectively. An
alternative loss function is given by the pinball loss, defined
as follows (Koenker and Bassett, 1978):

Lpinball =
1
N

N∑
i=1

max(τ · (yi − ŷi), (1− τ) · (ŷi − yi)), (1)

where τ is the target quantile, N is the number of training
observations, i represents a specific observation, yi is the ac-
tual value of the target variable for that observation, and ŷi is
the forecast generated by the model. This loss function pun-
ishes predictions that are further away from the quantile of
interest and is minimised by the conditional quantile of the
dependent variable.1 By choosing an extreme quantile of in-

1As the median is the 50th quantile, the pinball loss is equivalent
to L1 when choosing τ = 0.5.

terest, it is possible to study, in a regression setting, how dif-
ferent predictors affect the tails of the distribution. Further-
more, models minimising the pinball loss could be used to set
approximate confidence intervals around models maximising
the average skill of the prediction.

Within a deep learning setting, models minimising the pin-
ball loss often go under the name of deep quantile regres-
sion or quantile regression neural networks (Taylor, 2000).
A limitation of deep quantile regression is that enough ob-
servations below and above the quantile of interest need to
be available for the model to work properly. This can some-
times be an issue within a DLWP framework, given that the
main interest can lie in very extreme quantiles, i.e. seldom-
observed extreme events with long return periods.

A solution to this problem has recently been proposed by
Pasche and Engelke (2023), who, building upon earlier work
by Carreau and Bengio (2007), suggest using a two-step
peak-over-threshold approach. First, a quantile-regression-
based estimator, such as linear or deep quantile regression, is
used to estimate a conditional threshold of interest. Then, the
properties of the distribution of the exceedances are modelled
with the help of extreme value theory (EVT). Pasche and
Engelke (2023) assume that, in accordance with Balkema
and De Haan (1974) and Pickands (1975), independent ex-
ceedances approximately follow a generalised Pareto distri-
bution, with parameters depending on the value of the regres-
sors. These parameters can then be estimated with the help of
a neural network, and the resulting empirical distribution can
be used to derive the properties of the distribution of any ex-
treme event of interest, as is commonly done in EVT.

However, even the combination of quantile and EVT-based
approaches suffers from a key limitation: it does not pro-
vide a deterministic forecast for a given time and place but
only return periods or values and a risk ratio of the prob-
ability of an event taking place compared to the climatol-
ogy. In other words, it answers questions such as “Is extreme
event ‘X’ more likely to occur than usual on day ‘Y ’?” or
“How often does an event of a given severity occur given
an initial set of atmospheric conditions?”. It does not answer
the question typically associated with deterministic weather
forecasts, namely, “Is extreme event ‘X’ going to take place
on day ‘Y ’ at location ‘Z’?”.

A possible alternative for cases in which we are interested
in answering the latter question, i.e. we want a deterministic
forecast of a given extreme event at a specific time and place,
is to use a binary classification model. This can, for instance,
minimise a binary cross-entropy loss, defined as follows:

Lbincross =
1
N

N∑
i=1

yi · log(yi)+ (1− yi) · log(1− yi). (2)

By defining the extreme event on the basis of a threshold or
a given quantile of the climatology and minimising Eq. (2),
we can train a model to estimate the probability of an event
of a given magnitude taking place at a specific time and loca-
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Figure 3. Extreme event prediction model design workflow. The chosen approach should depend on the information one aims to gather and
the return period of the extreme events of interest.

tion. The forecasted probability for a specific time and place
can then easily be converted into a deterministic forecast by
choosing a cutoff probability (e.g. 50 %), where events above
that probability are expected to take place and events under
that probability are not.

Whenever a heavy class imbalance is present, i.e. the in-
terest lies in very extreme quantiles, training a classification
neural network may be challenging, as the model may be
prone to reverting to the trivial solution of never predicting
an extreme event. In those cases, class weights may help:
weights are introduced in Eq. (2) in order to give greater
importance to the loss generated by training samples from
the minority class, namely, the extremes. In other words, the
model is trained to minimise a weighted cross-entropy loss
(Eq. 3), defined as follows:

Lweightedbincross =
1
N

N∑
i=1
−w1yi · log(yi)

+w0(1− yi) · log(1− yi), (3)

where w1 is the weight assigned to observations in the mi-
nority class and w0 is the weight assigned to observations in
the majority class.

Even after introducing class weights, this approach, like
quantile regression, needs enough observations in each of
the two classes for the model to work properly. Thus, it is
not suitable in isolation for extremes with a very long return
period, appearing no or very few times in the training sam-
ple. However, as in the previous case, we can build a two-
step peak-over-threshold model that addresses this problem.
First, we decide through a classification model whether or
not an event above a certain not-too-extreme threshold is go-
ing to take place. Then, we model the tails of the distribution
with the help of the Pickands–Balkema–De Haan theorem
(Balkema and De Haan, 1974; Pickands, 1975), which allows
one to make inferences on very extreme cases potentially be-
yond the model’s training range.

The different steps introduced above can be combined in
order to obtain forecasts providing a rich set of information.
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For instance, one may jointly implement a classification-
based and a quantile-based deep learning model to obtain
time- and location-specific forecasts of an extreme as well
as information on its return period. Figure 3 summarises the
approaches described in this section in a simple framework
that can be used to tailor deep learning models to extreme
weather forecasting.

4 Conclusions and recommendations

Accurate prediction of extreme weather events is a central
part of a high-quality medium-range weather forecast and is,
thus, of great societal and economic relevance (World Meteo-
rological Organization, 2022; Merz et al., 2020). In order for
global end-to-end deep learning models to attain widespread
operational use, we argue that achieving greater average skill
than physics-based numerical weather prediction models is
not sufficient. They additionally need to demonstrate skill for
extreme weather events.

We identify two key limitations that constrain current
state-of-the-art deep learning forecasts of extreme weather.
First, current architectures are not optimised to make use
of the limited training samples for extreme values. Second,
the models are not optimised on extreme event forecasts and
make some simplistic assumptions regarding how the fore-
casting errors are distributed. These issues are compounded
by the scant or missing validation of extreme weather fore-
casts provided by leading global DLWP models.

We argue for the urgency of a DLWP workflow targeted
to extreme weather forecasts, whereby deep learning models
specifically designed to handle extreme events should com-
plement deep learning models maximising the average skill
of the forecast. To enable rapid advances, the implementa-
tion of such a workflow should rest on adapting existing deep
learning architectures, rather than developing radically new
and untested approaches. This should be complemented by
placing a greater emphasis on assessing the performance of
existing and future models in the tails of the distributions of
the forecasted variables (Watson, 2022).

Echoing the above recommendations, in this article, we
have proposed a foundational workflow to advance deep
learning extreme weather forecasts, in which the method of
choice depends on the meteorological question to be an-
swered – whether probabilistic or deterministic – and the re-
turn period of the extreme events of interest. The workflow is
fully enabled by recent architectural advances in deep learn-
ing weather forecast models; thus, we envision it as func-
tional to achieve robust deep learning forecasts of extreme
weather in the near future.
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