Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
Edmund P. Meredith
CORRESPONDING AUTHOR
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Uwe Ulbrich
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Henning W. Rust
Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany
Related authors
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Robin Noyelle, Uwe Ulbrich, Nico Becker, and Edmund P. Meredith
Nat. Hazards Earth Syst. Sci., 19, 941–955, https://doi.org/10.5194/nhess-19-941-2019, https://doi.org/10.5194/nhess-19-941-2019, 2019
Short summary
Short summary
This paper investigates the formation of the Mediterranean hurricane that developed between Balearic Islands and Sardinia in October 1996, with a particular focus on the influence of sea surface temperature. We show that increased sea surface temperatures lead to greater probabilities of appearance and a greater strength of the resulting hurricane, suggesting that the processes for Mediterranean hurricanes at steady state are very similar to tropical cyclones.
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025, https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
Short summary
Tree fall events have an impact on forests and transport systems. Our study explored tree fall in relation to wind and other weather conditions. We used tree fall data along railway lines and ERA5 and radar meteorological data to build a logistic regression model. We found that high and prolonged wind speeds, wet conditions, and high air density increase tree fall risk. These factors might change in the changing climate, which in return will change risks for trees, forests and transport.
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025, https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Short summary
Deforestation has a significant impact on climate, yet its effects on drought remain less understood. This study investigates how deforestation affects drought across various climate zones and timescales. Findings indicate that deforestation leads to drier conditions in tropical regions and wetter conditions in arid areas, with minimal effects in temperate zones. Long-term drought is more affected than short-term drought, offering valuable insights into vegetation–climate interactions.
Franziska Tügel, Katrin M. Nissen, Lennart Steffen, Yangwei Zhang, Uwe Ulbrich, and Reinhard Hinkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-445, https://doi.org/10.5194/egusphere-2025-445, 2025
Short summary
Short summary
This study examines how extreme rainfall in Berlin, Germany, may intensify due to global warming and how that could worsen flooding in a selected part of the city. We assess the role of the drainage system, infiltration from unsealed surfaces, and a potential adaptation scenario with all roofs as retention roofs in reducing flooding under extreme rainfall. Combining climate and hydrodynamic simulations, we provide insights into future challenges and possible solutions for urban flood management.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Andreas Trojand, Henning Rust, and Uwe Ulbrich
EGUsphere, https://doi.org/10.5194/egusphere-2024-1506, https://doi.org/10.5194/egusphere-2024-1506, 2024
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporal dynamic.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
Katrin M. Nissen, Martina Wilde, Thomas M. Kreuzer, Annika Wohlers, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 23, 2737–2748, https://doi.org/10.5194/nhess-23-2737-2023, https://doi.org/10.5194/nhess-23-2737-2023, 2023
Short summary
Short summary
The effect of climate change on rockfall probability in the German low mountain regions is investigated in observations and in 23 different climate scenario simulations. Under a pessimistic greenhouse gas scenario, the simulations suggest a decrease in rockfall probability. This reduction is mainly caused by a decrease in the number of freeze–thaw cycles due to higher atmospheric temperatures.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021, https://doi.org/10.5194/wcd-2-927-2021, 2021
Short summary
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021, https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary
Short summary
Decadal climate ensemble forecasts are increasingly being used to guide adaptation measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must be adjusted. Since it is not clear which statistical model is optimal for this purpose, we propose a recalibration strategy with a systematic model selection based on non-homogeneous boosting for identifying the most relevant features for both ensemble mean and ensemble spread.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Noelia Otero, Henning W. Rust, and Tim Butler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-691, https://doi.org/10.5194/acp-2020-691, 2020
Revised manuscript not accepted
Short summary
Short summary
Surface ozone concentrations are strongly correlated with temperature in summertime. Using long-term measurements, we investigate changes in the observed relationship between ozone and temperature over Germany. We propose a new statistical approach based on Generalized Additive Models (GAMs) to describe ozone production rates as a function of nitrogen oxides (NOx) and temperature. Our results suggest that NOx reductions alone can not explain the changes in the temperature dependence of ozone.
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019, https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Short summary
Decadal climate predictions are valuable to society as they allow us to estimate climate conditions several years in advance. We analyze the latest version of the German MiKlip prediction system (https://www.fona-miklip.de) and assess the effect of the model resolution on the skill of the system. The increase in the resolution of the system reduces the bias and significantly improves the forecast skill for North Atlantic extratropical winter dynamics for lead times of two to five winters.
Robin Noyelle, Uwe Ulbrich, Nico Becker, and Edmund P. Meredith
Nat. Hazards Earth Syst. Sci., 19, 941–955, https://doi.org/10.5194/nhess-19-941-2019, https://doi.org/10.5194/nhess-19-941-2019, 2019
Short summary
Short summary
This paper investigates the formation of the Mediterranean hurricane that developed between Balearic Islands and Sardinia in October 1996, with a particular focus on the influence of sea surface temperature. We show that increased sea surface temperatures lead to greater probabilities of appearance and a greater strength of the resulting hurricane, suggesting that the processes for Mediterranean hurricanes at steady state are very similar to tropical cyclones.
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018, https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Alexander Pasternack, Jonas Bhend, Mark A. Liniger, Henning W. Rust, Wolfgang A. Müller, and Uwe Ulbrich
Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018, https://doi.org/10.5194/gmd-11-351-2018, 2018
Short summary
Short summary
We propose a decadal forecast recalibration strategy (DeFoReSt) which simultaneously adjusts unconditional and conditional bias, as well as the ensemble spread while considering the typical setting of decadal predictions, i.e., model drift and a climate trend. We apply DeFoReSt to decadal toy model data and surface temperature forecasts from the MiKlip system and find consistent improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.
Christoph Ritschel, Uwe Ulbrich, Peter Névir, and Henning W. Rust
Hydrol. Earth Syst. Sci., 21, 6501–6517, https://doi.org/10.5194/hess-21-6501-2017, https://doi.org/10.5194/hess-21-6501-2017, 2017
Short summary
Short summary
A stochastic model for precipitation is used to simulate an observed precipitation series; it is compared to the original series in terms of intensity–duration frequency curves. Basis for the latter curves is a parametric model for the duration dependence of the underlying extreme value model allowing a consistent estimation of one single duration-dependent distribution using all duration series simultaneously. The stochastic model reproduces the curves except for very rare extreme events.
Katrin M. Nissen and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 17, 1177–1190, https://doi.org/10.5194/nhess-17-1177-2017, https://doi.org/10.5194/nhess-17-1177-2017, 2017
Short summary
Short summary
The effect of climate change on potentially infrastructure damaging heavy precipitation events in Europe is investigated. A novel technique records not only event frequency but also event size, duration and severity as these parameters determine the potential consequences of the event. Over most of Europe the frequency and size of heavy precipitation events is predicted to increase. Moreover, the most severe events are predicted for future periods.
Tobias Pardowitz, Robert Osinski, Tim Kruschke, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 16, 2391–2402, https://doi.org/10.5194/nhess-16-2391-2016, https://doi.org/10.5194/nhess-16-2391-2016, 2016
Short summary
Short summary
This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences. Such predictions are subject to large uncertainty due to meteorological forecast uncertainty and uncertainties in modelling weather impacts. The paper aims to quantify these uncertainties and demonstrate that valuable predictions can be made on the district level several days ahead.
R. Osinski, P. Lorenz, T. Kruschke, M. Voigt, U. Ulbrich, G. C. Leckebusch, E. Faust, T. Hofherr, and D. Majewski
Nat. Hazards Earth Syst. Sci., 16, 255–268, https://doi.org/10.5194/nhess-16-255-2016, https://doi.org/10.5194/nhess-16-255-2016, 2016
U. Dayan, K. Nissen, and U. Ulbrich
Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, https://doi.org/10.5194/nhess-15-2525-2015, 2015
Short summary
Short summary
This review discusses published studies analyzing the atmospheric conditions that induce extreme precipitation over the eastern and western Mediterranean regions. It presents a systematic description of the interlacing role of several atmospheric processes of different scales - local, meso, and synoptic - that enable the development of torrential rains.
D. J. Befort, M. Fischer, G. C. Leckebusch, U. Ulbrich, A. Ganske, G. Rosenhagen, and H. Heinrich
Nat. Hazards Earth Syst. Sci., 15, 1437–1447, https://doi.org/10.5194/nhess-15-1437-2015, https://doi.org/10.5194/nhess-15-1437-2015, 2015
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
Related subject area
Climate and Earth system modeling
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Process-based modeling framework for sustainable irrigation management at the regional scale: integrating rice production, water use, and greenhouse gas emissions
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Baseline Climate Variables for Earth System Modelling
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
The ensemble consistency test: from CESM to MPAS and beyond
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
A Fortran–Python interface for integrating machine learning parameterization into earth system models
ROCKE-3D 2.0: An updated general circulation model for simulating the climates of rocky planets
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
COSP-RTTOV-1.0: Flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Impact of spatial resolution on CMIP6-driven Mediterranean climate simulations: a focus on precipitation distribution over Italy
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Statistical summaries for streamed data from climate simulations: One-pass algorithms (v0.6.2)
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
FACA v1 – Fully Automated Co-Alignment of UAV Point Clouds
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025, https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025, https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary
Short summary
Aerosols strongly influence Earth's climate as they interact with radiation and clouds. New Earth system models run at resolutions of a few kilometers. To simulate the Earth system with interactive aerosols, we developed a new aerosol module. It represents aerosols as an ensemble of lognormal modes with given sizes and compositions. We present a year-long simulation with four modes at a resolution of 5 km. It captures key processes like the formation of dust storms in the Sahara.
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev., 18, 3799–3817, https://doi.org/10.5194/gmd-18-3799-2025, https://doi.org/10.5194/gmd-18-3799-2025, 2025
Short summary
Short summary
This study proposed an advancing framework for modeling regional rice production, water use, and greenhouse gas emissions. The framework integrated a process-based soil-crop model with vital physiological effects, a novel model upscaling method, and the NSGA-II multi-objective optimization algorithm at a parallel computing platform. The framework provides a valuable tool for multi-objective optimization of rice irrigation schemes at a large scale.
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025, https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Short summary
Access to deep moisture below the Earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the Earth system do not adequately capture where and when deep root water uptake occurs. We address this by adding deep soil layers and a root water uptake feature to an existing model. Out modifications lead to increased dry-month transpiration and improved simulation of the annual transpiration cycle.
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025, https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary
Short summary
We present an automatic tool that optimizes resource distribution in coupled climate models, enhancing speed and reducing computational costs without requiring expert knowledge. Users can set energy/time criteria or limit resource usage. Tested on various European Community Earth System Model (EC-Earth) configurations and high-performance computing (HPC) platforms, it achieved up to 34 % faster simulations with fewer resources.
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025, https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
Short summary
As fire seasons in Brazil become increasingly severe, confidently understanding the factors driving fires is more critical than ever. To address this challenge, we developed FLAME (Fire Landscape Analysis using Maximum Entropy), a new model designed to predict fires and to analyse the spatial influence of both environmental and human factors while accounting for uncertainties. By adapting the model to different regions, we can enhance fire management strategies, making FLAME a powerful tool for protecting landscapes in Brazil and beyond.
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025, https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
Short summary
NMH-CS 3.0 is a C#-based ecohydrological model reconstructed from the WRF-Hydro/Noah-MP model by translating the Fortran code of WRF-Hydro 3.0 and integrating a parallel river routing module. It enables efficient execution on multi-core personal computers. Simulations in the Yellow River basin demonstrate its consistency with WRF-Hydro outputs, providing a reliable alternative to the original Noah-MP model.
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025, https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Short summary
We present, analyze, and validate a methodology for quantifying uncertainty in gridded meteorological data products produced by spatial interpolation. In a validation case study using daily maximum near-surface air temperature (Tmax), the method works well and produces predictive distributions with closely matching theoretical versus actual coverage levels. Application of the method reveals that the magnitude of uncertainty in interpolated Tmax varies significantly in both space and time.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025, https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025, https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Short summary
We describe, calibrate and test the Danish Center for Earth System Science (DCESS) II model, a new, broad, adaptable and fast Earth system model. DCESS II is designed for global simulations over timescales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II is a useful, computationally friendly tool for simulations of past climates as well as for future Earth system projections.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Kostas Tsigaridis, Andrew S. Ackerman, Igor Aleinov, Mark A. Chandler, Thomas L. Clune, Christopher M. Colose, Anthony D. Del Genio, Maxwell Kelley, Nancy Y. Kiang, Anthony Leboissetier, Jan P. Perlwitz, Reto A. Ruedy, Gary L. Russell, Linda E. Sohl, Michael J. Way, and Eric T. Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2025-925, https://doi.org/10.5194/egusphere-2025-925, 2025
Short summary
Short summary
We present the second generation of ROCKE-3D, a generalized 3-dimensional model for use in Solar System and exoplanetary simulations of rocky planet climates. We quantify how the different component choices affect model results, and discuss strengths and limitations of using each component, together with how one can select which component to use. ROCKE-3D is publicly available and tutorial sessions are available for the community, greatly facilitating its use by any interested group.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2025-169, https://doi.org/10.5194/egusphere-2025-169, 2025
Short summary
Short summary
Satellites have observed earth's emission of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about the earth and atmosphere. We present a tool that runs alongside global climate models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
Maria Vittoria Struglia, Alessandro Anav, Marta Antonelli, Sandro Calmanti, Franco Catalano, Alessandro Dell'Aquila, Emanuela Pichelli, and Giovanna Pisacane
EGUsphere, https://doi.org/10.5194/egusphere-2025-387, https://doi.org/10.5194/egusphere-2025-387, 2025
Short summary
Short summary
We present the results of downscaling global climate projections for the Mediterranean and Italian regions aiming to produce high-resolution climate information for the assessment of climate change signals, focusing on extreme events. A general warming is foreseen by the end of century with a mean precipitation reduction accompanied, over Italian Peninsula, by a strong increase in the intensity of extreme precipitation events, particularly relevant for the high emissions scenario during autumn
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086, https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone, and greenhouse gases alone, among others, are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies, and to underpin the next IPCC report.
Katherine Grayson, Stephan Thober, Aleksander Lacima-Nadolnik, Ehsan Sharifi, Llorenç Lledó, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-28, https://doi.org/10.5194/egusphere-2025-28, 2025
Short summary
Short summary
To provide the most accurate climate adaptation information, climate models are being run with finer grid resolution, resulting in larger data output. This paper presents intelligent data reduction algorithms that act on streamed data, a novel way of processing climate data as soon as it is produced. Using these algorithms to calculate statistics, we show that the accuracy provided is well within acceptable bounds while still providing memory savings that bypass unfeasible storage requirements.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Nick Schüßler, Jewgenij Torizin, Claudia Gunkel, Karsten Schütze, Lars Tiepolt, Dirk Kuhn, Michael Fuchs, and Steffen Prüfer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-209, https://doi.org/10.5194/gmd-2024-209, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
FACA – Fully Automated Co-Alignment – is a tool designed to generate co-aligned point clouds. We aim to accelerate the application of the co-alignment method and achieve fast results with evolving temporal data and minimal site-specific preparation. FACA offers multiple ways to interact with the workflow, enabling new users to quickly generate initial results through the custom interface, as well as integration into larger automated workflows via the command line. Test datasets are provided.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Cited articles
Amengual, A., Borga, M., Ravazzani, G., and Crema, S.: The role of storm
movement in controlling flash flood response: An analysis of the 28 September
2012 extreme event in Murcia, southeastern Spain, J.
Hydrometeorol., 22, 2379–2392, 2021. a
Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., Garfinkel, C. I.,
Adam, O., Dayan, U., and Morin, E.: Reduced Rainfall in Future Heavy
Precipitation Events Related to Contracted Rain Area Despite Increased Rain
Rate, Earth's Future, 10, e2021EF002397, https://doi.org/10.1029/2021EF002397, 2022. a
Baur, F., Keil, C., and Craig, G. C.: Soil moisture–precipitation coupling
over Central Europe: Interactions between surface anomalies at different
scales and the dynamical implication, Q. J. Roy.
Meteor. Soc., 144, 2863–2875, https://doi.org/10.1002/qj.3415, 2018. a
Bennett, L., Melchers, B., and Proppe, B.: Curta: A General-purpose High-Performance Computer at ZEDAT, Freie Universität Berlin, https://doi.org/10.17169/refubium-26754, 2020. a
Brisson, E., Demuzere, M., and van Lipzig, N. P.: Modelling strategies for
performing convection-permitting climate simulations, Meteorol. Z., 25,
149–163, https://doi.org/10.1127/metz/2015/0598, 2016a. a
Brisson, E., Van Weverberg, K., Demuzere, M., Devis, A., Saeed, S., Stengel,
M., and van Lipzig, N. P.: How well can a convection-permitting climate model
reproduce decadal statistics of precipitation, temperature and cloud
characteristics?, Clim. Dynam., 47, 3043–3061,
https://doi.org/10.1007/s00382-016-3012-z, 2016b. a
Brisson, E., Brendel, C., Herzog, S., and Ahrens, B.: Lagrangian evaluation of
convective shower characteristics in a convection-permitting model,
Meteorol. Z., 27, 59–66, https://doi.org/10.1127/metz/2017/0817, 2018. a, b, c, d
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M.,
Heistermann, M., Köhn-Reich, L., López-Tarazón, J. A., Moran, T., Ozturk,
U., Reinhardt-Imjela, C., and Wendi, D.: Forensic hydro-meteorological
analysis of an extreme flash flood: The 2016-05-29 event in Braunsbach, SW
Germany, Sci. Total Environ., 630, 977–991,
https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018. a
Burghardt, B. J., Evans, C., and Roebber, P. J.: Assessing the Predictability
of Convection Initiation in the High Plains Using an Object-Based Approach,
Weather Forecast., 29, 403–418, https://doi.org/10.1175/WAF-D-13-00089.1, 2014. a
Caillaud, C., Somot, S., Alias, A., Bernard-Bouissières, I., Fumière,
Q., Laurantin, O., Seity, Y., and Ducrocq, V.: Modelling Mediterranean
heavy precipitation events at climate scale: an object-oriented evaluation of
the CNRM-AROME convection-permitting regional climate model, Clim.
Dynam., 56, 1717–1752, https://doi.org/10.1007/s00382-020-05558-y, 2021. a, b
Caine, S., Lane, T. P., May, P. T., Jakob, C., Siems, S. T., Manton, M. J., and
Pinto, J.: Statistical Assessment of Tropical Convection-Permitting Model
Simulations Using a Cell-Tracking Algorithm, Mon. Weather Rev., 141,
557–581, https://doi.org/10.1175/MWR-D-11-00274.1, 2013. a, b
Caldas-Alvarez, A., Augenstein, M., Ayzel, G., Barfus, K., Cherian, R., Dillenardt, L., Fauer, F., Feldmann, H., Heistermann, M., Karwat, A., Kaspar, F., Kreibich, H., Lucio-Eceiza, E. E., Meredith, E. P., Mohr, S., Niermann, D., Pfahl, S., Ruff, F., Rust, H. W., Schoppa, L., Schwitalla, T., Steidl, S., Thieken, A. H., Tradowsky, J. S., Wulfmeyer, V., and Quaas, J.: Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area, Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, 2022. a
Chen, D., Guo, J., Yao, D., Lin, Y., Zhao, C., Min, M., Xu, H., Liu, L., Huang,
X., Chen, T., and Zhai, P.: Mesoscale Convective Systems in the Asian
Monsoon Region From Advanced Himawari Imager: Algorithms and Preliminary
Results, J. Geophys. Res.-Atmos., 124, 2210–2234,
https://doi.org/10.1029/2018JD029707, 2019. a
Clark, A. J., Bullock, R. G., Jensen, T. L., Xue, M., and Kong, F.:
Application of Object-Based Time-Domain Diagnostics for Tracking
Precipitation Systems in Convection-Allowing Models, Weather
Forecast., 29, 517–542, https://doi.org/10.1175/WAF-D-13-00098.1, 2014. a
Davis, C., Brown, B., and Bullock, R.: Object-Based Verification of
Precipitation Forecasts. Part I: Methodology and Application to Mesoscale
Rain Areas, Mon. Weather Rev., 134, 1772–1784,
https://doi.org/10.1175/MWR3145.1, 2006. a
Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and their Application,
Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge
University Press, https://doi.org/10.1017/CBO9780511802843, 1997. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011 (data available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 30 January 2023). a, b
Dixon, M. and Wiener, G.: TITAN: Thunderstorm Identification, Tracking,
Analysis, and Nowcasting – A Radar-based Methodology, J.
Atmos. Ocean. Technol., 10, 785–797,
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2, 1993. a, b
DWD: Deutscher Wetterdienst – Glossar – Niederschlagsintensität,
https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv2=101812&lv3=101906,
last access: 15 December 2022. a
Einfalt, T., Denoeux, T., and Jacquet, G.: A radar rainfall forecasting method
designed for hydrological purposes, J. Hydrol., 114, 229–244,
https://doi.org/10.1016/0022-1694(90)90058-6, 1990. a, b
Fosser, G., Khodayar, S., and Berg, P.: Benefit of convection permitting
climate model simulations in the representation of convective precipitation,
Clim. Dynam., 44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2015. a
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N.,
Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter,
J. O., Kendon, E. J., Lewis, E., Schär, C., Sharma, A., Villarini, G.,
Wasko, C., and Zhang, X.: Anthropogenic intensification of short-duration
rainfall extremes, Nat. Rev. Earth Environ., 2, 107–122,
https://doi.org/10.1038/s43017-020-00128-6, 2021. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available at: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/, last access: 30 January 2023). a, b
Germann, U. and Zawadzki, I.: Scale-Dependence of the Predictability of
Precipitation from Continental Radar Images. Part I: Description of the
Methodology, Mon. Weather Rev., 130, 2859–2873,
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2, 2002. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader,
J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K.,
Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U.,
Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations
for the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, 2013. a
Golding, B. W.: Nimrod: a system for generating automated very short range
forecasts, Meteorol. Appl., 5, 1–16,
https://doi.org/10.1017/S1350482798000577, 1998. a
Goldstein, H. and Healy, M. J. R.: The Graphical Presentation of a Collection
of Means, J. Roy. Stat. Soc. A, 158, 175–177, https://doi.org/10.2307/2983411, 1995. a, b
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja,
R., Sterl, A., Wyser, K., Semmler, T., Yang, S., Van den Hurk, B., van Noije, T.,
van der Linden, E., and
van der Wiel, K:
EC-Earth V2. 2: description and validation of a new seamless earth system
prediction model, Clim. Dynam., 39, 2611–2629,
https://doi.org/10.1007/s00382-011-1228-5, 2012. a
He, T., Einfalt, T., Zhang, J., Hua, J., and Cai, Y.: New Algorithm for Rain
Cell Identification and Tracking in Rainfall Event Analysis, Atmosphere, 10,
532, https://doi.org/10.3390/atmos10090532, 2019. a
Hering, A., Morel, C., Galli, G., Sénési, S., Ambrosetti, P., and
Boscacci, M.: Nowcasting thunderstorms in the Alpine region using a radar
based adaptive thresholding scheme, in: Proceedings of ERAD, Copernicus GmbH, 1,
206–211, 2004. a
Hibino, K., Takayabu, I., Wakazuki, Y., and Ogata, T.: Physical responses of
convective heavy rainfall to future warming condition: Case study of the
Hiroshima event, Front. Earth Sci., 6, 35,
https://doi.org/10.3389/feart.2018.00035, 2018. a
Hirt, M. and Craig, G. C.: A cold pool perturbation scheme to improve
convective initiation in convection-permitting models, Q. J. Roy. Meteor. Soc., 147, 2429–2447, https://doi.org/10.1002/qj.4032,
2021. a, b
Hirt, M., Rasp, S., Blahak, U., and Craig, G. C.: Stochastic Parameterization
of Processes Leading to Convective Initiation in Kilometer-Scale Models,
Mon. Weather Rev., 147, 3917–3934, https://doi.org/10.1175/MWR-D-19-0060.1,
2019. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,
S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S.,
Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R.,
Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg. Environ.
Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a
Keil, C., Heinlein, F., and Craig, G. C.: The convective adjustment time-scale
as indicator of predictability of convective precipitation, Q. J. Roy. Meteor. Soc., 140, 480–490, https://doi.org/10.1002/qj.2143,
2014. a
Keil, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L., and Barthlott, C.:
Relative contribution of soil moisture, boundary-layer and microphysical
perturbations on convective predictability in different weather regimes,
Q. J. Roy. Meteor. Soc., 145, 3102–3115,
https://doi.org/10.1002/qj.3607, 2019. a
Keller, M., Kröner, N., Fuhrer, O., Lüthi, D., Schmidli, J., Stengel, M., Stöckli, R., and Schär, C.: The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models, Atmos. Chem. Phys., 18, 5253–5264, https://doi.org/10.5194/acp-18-5253-2018, 2018. a
Knist, S., Goergen, K., and Simmer, C.: Evaluation and projected changes of
precipitation statistics in convection-permitting WRF climate simulations
over Central Europe, Clim. Dynam., 55, 1–17,
https://doi.org/10.1007/s00382-018-4147-x, 2018. a
Kröner, N., Kotlarski, S., Fischer, E., Lüthi, D., Zubler, E., and
Schär, C.: Separating climate change signals into thermodynamic,
lapse-rate and circulation effects: theory and application to the European
summer climate, Clim. Dynam., 48, 3425–3440,
https://doi.org/10.1007/s00382-016-3276-3, 2017. a
Lackmann, G. M.: The south-central US flood of May 2010: Present and future,
J. Climate, 26, 4688–4709, https://doi.org/10.1175/JCLI-D-12-00392.1, 2013. a
Li, L., Li, Y., and Li, Z.: Object-based tracking of precipitation systems in
western Canada: the importance of temporal resolution of source data,
Clim. Dynam., 55, 2421–2437, https://doi.org/10.1007/s00382-020-05388-y, 2020. a, b
Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P.,
Lemonsu, A., Kotlarski, S., and Caillaud, C.: Convection-permitting modeling
with regional climate models: Latest developments and next steps, Wiley
Interdisciplinary Reviews: Climate Change, 12, e731, https://doi.org/10.1002/wcc.731,
2021. a
Mandapaka, P. V., Germann, U., Panziera, L., and Hering, A.: Can Lagrangian
extrapolation of radar fields be used for precipitation nowcasting over
complex alpine orography?, Weather Forecast., 27, 28–49,
https://doi.org/10.1175/WAF-D-11-00050.1, 2012. a
Mazza, E., Ulbrich, U., and Klein, R.: The tropical transition of the October
1996 medicane in the western Mediterranean Sea: A warm seclusion event,
Mon. Weather Rev., 145, 2575–2595, https://doi.org/10.1175/MWR-D-16-0474.1, 2017. a
Meredith, E. P., Ulbrich, U., and Rust, H. W.: The Diurnal Nature of Future
Extreme Precipitation Intensification, Geophys. Res. Lett., 46,
7680–7689, https://doi.org/10.1029/2019GL082385, 2019. a
Meredith, E. P., Ulbrich, U., and Rust, H. W.: Subhourly rainfall in a
convection-permitting model, Environ. Res. Lett., 15, 034031,
https://doi.org/10.1088/1748-9326/ab6787, 2020. a
Meredith, E. P., Ulbrich, U., Rust, H. W., and Truhetz, H.: Present and future
diurnal hourly precipitation in 0.11∘ EURO-CORDEX models and at
convection-permitting resolution, Environmental Research Communications, 3,
055002, https://doi.org/10.1088/2515-7620/abf15e, 2021. a
Meredith, E. P., Ulbrich, U., and Rust, H. W.: Pseudo global-warming
simulations with COSMO-CLM of a period of high convective activity over
Germany, World Data Centre for Climate [data set],
https://www.wdc-climate.de/ui/entry?acronym=DKRZ_LTA_1152_ds00302 (last access: 30 January 2023),
2022a. a
Meredith, E. P., Ulbrich, U., and Rust, H. W.: Data from “Cell tracking of
convective rainfall: sensitivity of climate-change signal to tracking
algorithm and cell definition (Cell-TAO v1.0)”, Zenodo [code],
https://doi.org/10.5281/zenodo.6977074, 2022b. a
Morel, C. and Senesi, S.: A climatology of mesoscale convective systems over
Europe using satellite infrared imagery. I: Methodology, Q. J. Roy. Meteor. Soc., 128, 1953–1971,
https://doi.org/10.1256/003590002320603485, 2002. a
Moseley, C., Berg, P., and Haerter, J. O.: Probing the precipitation life cycle
by iterative rain cell tracking, J. Geophys. Res.-Atmos., 118, 13361–13370, https://doi.org/10.1002/2013JD020868, 2013. a, b, c, d
Müller, S. K., Caillaud, C., Chan, S., de Vries, H., Bastin, S.,
Berthou, S., Brisson, E., Demory, M.-E., Feldmann, H., Goergen, K., Kartsios, S., Lind, P., Keuler, K., Pichelli, E., Raffa, M., Tölle, M.
H., and Warrach-Sagi, K.: Evaluation
of Alpine-Mediterranean precipitation events in convection-permitting
regional climate models using a set of tracking algorithms, Clim. Dynam., 1–19, https://doi.org/10.1007/s00382-022-06555-z, 2022. a, b
Muñoz, C., Wang, L.-P., and Willems, P.: Enhanced object-based tracking
algorithm for convective rain storms and cells, Atmos. Res., 201,
144–158, https://doi.org/10.1016/j.atmosres.2017.10.027, 2018. a
NCL: The NCAR Command Language (Version 6.5.0), Boulder,
Colorado, UCAR/NCAR/CISL/TDD [code], https://doi.org/10.5065/D6WD3XH5, 2018. a
Nissen, K. M. and Ulbrich, U.: Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change, Nat. Hazards Earth Syst. Sci., 17, 1177–1190, https://doi.org/10.5194/nhess-17-1177-2017, 2017. a
Novo, S., Martínez, D., and Puentes, O.: Tracking, analysis, and nowcasting of
Cuban convective cells as seen by radar, Meteorol. Appl., 21,
585–595, https://doi.org/10.1002/met.1380, 2014. a
Noyelle, R., Ulbrich, U., Becker, N., and Meredith, E. P.: Assessing the impact of sea surface temperatures on a simulated medicane using ensemble simulations, Nat. Hazards Earth Syst. Sci., 19, 941–955, https://doi.org/10.5194/nhess-19-941-2019, 2019. a
Pardowitz, T., Befort, D. J., Leckebusch, G. C., and Ulbrich, U.: Estimating
uncertainties from high resolution simulations of extreme wind storms and
consequences for impacts, Meteorol. Z., 25, 531–541,
https://doi.org/10.1127/metz/2016/0582, 2016. a
Parodi, A., Ferraris, L., Gallus, W., Maugeri, M., Molini, L., Siccardi, F., and Boni, G.: Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: the San Fruttuoso case of 1915, Clim. Past, 13, 455–472, https://doi.org/10.5194/cp-13-455-2017, 2017. a
Piper, D., Kunz, M., Ehmele, F., Mohr, S., Mühr, B., Kron, A., and Daniell, J.: Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – Part 1: Meteorological background, Nat. Hazards Earth Syst. Sci., 16, 2835–2850, https://doi.org/10.5194/nhess-16-2835-2016, 2016. a, b
Poujol, B., Prein, A. F., and Newman, A. J.: Kilometer-scale modeling projects
a tripling of Alaskan convective storms in future climate, Clim.
Dynam., 55, 3543–3564, https://doi.org/10.1007/s00382-020-05466-1,
2020a. a, b
Poujol, B., Sobolowski, S., Mooney, P., and Berthou, S.: A physically based
precipitation separation algorithm for convection-permitting models over
complex topography, Q. J. Roy. Meteor. Soc.,
146, 748–761, https://doi.org/10.1002/qj.3706, 2020b. a, b
Purr, C., Brisson, E., and Ahrens, B.: Convective rain cell characteristics and
scaling in climate projections for Germany, Int. J.
Climatol., 41, 3174–3185, https://doi.org/10.1002/joc.7012, 2021. a, b, c, d
Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann,
E., Dudhia, J., Chen, F., Barlage, M., Yates, D., and Zhang, G.: Climate change impacts on the
water balance of the Colorado headwaters: High-resolution regional climate
model simulations, J. Hydrometeorol., 15, 1091–1116,
https://doi.org/10.1175/JHM-D-13-0118.1, 2014. a
Rasp, S., Selz, T., and Craig, G. C.: Variability and Clustering of
Midlatitude Summertime Convection: Testing the Craig and Cohen Theory in a
Convection-Permitting Ensemble with Stochastic Boundary Layer Perturbations,
J. Atmos. Sci., 75, 691–706,
https://doi.org/10.1175/JAS-D-17-0258.1, 2018.
a
Raupach, T. H., Martynov, A., Nisi, L., Hering, A., Barton, Y., and Martius, O.: Object-based analysis of simulated thunderstorms in Switzerland: application and validation of automated thunderstorm tracking with simulation data, Geosci. Model Dev., 14, 6495–6514, https://doi.org/10.5194/gmd-14-6495-2021, 2021. a, b
Rezacova, D., Zacharov, P., and Sokol, Z.: Uncertainty in the area-related QPF
for heavy convective precipitation, Atmos. Res., 93, 238–246,
https://doi.org/10.1016/j.atmosres.2008.12.005, 2009. a, b
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309,
2008. a, b
Schär, C., Frei, C., Lüthi, D., and Davies, H. C.: Surrogate
climate-change scenarios for regional climate models, Geophys. Res.
Lett., 23, 669–672, https://doi.org/10.1029/96GL00265, 1996. a, b
Skinner, P. S., Wheatley, D. M., Knopfmeier, K. H., Reinhart, A. E., Choate,
J. J., Jones, T. A., Creager, G. J., Dowell, D. C., Alexander, C. R., Ladwig,
T. T., Wicker, L. J., Heinselman, P. L., Minnis, P., and Palikonda, R.:
Object-Based Verification of a Prototype Warn-on-Forecast System, Weather
Forecast., 33, 1225–1250, https://doi.org/10.1175/WAF-D-18-0020.1, 2018. a
Stein, T. H. M., Hogan, R. J., Hanley, K. E., Nicol, J. C., Lean, H. W., Plant,
R. S., Clark, P. A., and Halliwell, C. E.: The Three-Dimensional Morphology
of Simulated and Observed Convective Storms over Southern England, Mon. Weather Rev., 142, 3264–3283, https://doi.org/10.1175/MWR-D-13-00372.1, 2014. a, b
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Clim. Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F.:
The CNRM-CM5. 1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2013. a
Wasko, C., Sharma, A., and Westra, S.: Reduced spatial extent of extreme storms
at higher temperatures, Geophys. Res. Lett., 43, 4026–4032, 2016. a
Woo, W.-C. and Wong, W.-K.: Operational Application of Optical Flow Techniques
to Radar-Based Rainfall Nowcasting, Atmosphere, 8, 48,
https://doi.org/10.3390/atmos8030048, 2017. a
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Cell-tracking algorithms allow for the study of properties of a convective cell across its...