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Abstract. Lagrangian analysis of convective precipitation
involves identifying convective cells (“objects”) and track-
ing them through space and time. The Lagrangian approach
helps to gain insight into the physical properties and impacts
of convective cells and, in particular, how these may respond
to climate change. Lagrangian analysis requires both a fixed
definition of what constitutes a convective object and a re-
liable tracking algorithm. Whether the climate-change sig-
nals of various object properties are sensitive to the choice
of tracking algorithm or to how a convective object is de-
fined has received little attention. Here we perform en-
semble pseudo-global-warming experiments at a convection-
permitting resolution to test this question. Using two con-
ceptually different tracking algorithms, Lagrangian analysis
is systematically repeated with different thresholds for defin-
ing a convective object, namely minimum values for object
area, intensity and lifetime. It is found that the threshold cri-
teria for identifying a convective object can have a strong
and statistically significant impact on the magnitude of the
climate-change signal, for all analysed object properties. The
tracking method, meanwhile, has no impact on the climate-
change signal as long as the precipitation data have a suf-
ficiently high temporal resolution: in general, the lower the
minimum permitted object size is, the higher the precipita-
tion data’s temporal resolution must be. For the case consid-
ered in our study, these insights reveal that irrespective of the
tracking method, projected changes in the characteristics of
convective rainfall vary considerably between cells of differ-
ing intensity, area and lifetime.

1 Introduction

Lagrangian analysis of convective precipitation offers an al-
ternative to the more common Eulerian approach, in which
precipitation is considered at a fixed location. In the La-
grangian framework, often referred to as “cell”, “storm”,
“feature” or “object-oriented” tracking, convective “objects”
are identified and then tracked through space and time. The
approach has historically been mostly used in radar-based
nowcasting, in which the location of convective cells is fore-
cast based on Lagrangian advection from previous radar
scans (Dixon and Wiener, 1993; Golding, 1998; Mandapaka
et al., 2012; Novo et al., 2014). The Lagrangian approach
furthermore allows for the properties of convective objects
to be measured during the object’s life cycle. Characterizing
these properties – e.g. area, mean or maximum intensity, and
distance travelled – has applications in both model evalua-
tion and climate-change and impact studies. In the former,
aspects of model-simulated convective precipitation which
would not be discernible from Eulerian analysis – e.g. cell
areal extent, lifetime and distance travelled – can be com-
pared with radar-based observations (Caine et al., 2013; Bris-
son et al., 2018; Purr et al., 2019; Caillaud et al., 2021; Rau-
pach et al., 2021), avoiding the double-penalty problem and
potentially revealing previously unknown model strengths or
weaknesses (Clark et al., 2014; Skinner et al., 2018). For
climate-change studies, Lagrangian techniques can identify
the relative changes in different storm properties, thus offer-
ing additional insight into the physical mechanisms underly-
ing projected future changes in convective precipitation (Purr
et al., 2021; Prein et al., 2017; Poujol et al., 2020a). For im-
pact studies, multiple factors such as storm motion, transla-
tion speed and spatiotemporal variability affect the drainage
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response of a catchment (Amengual et al., 2021): object-
oriented analysis allows for these factors to be quantified.

The many object-based algorithms used to track con-
vective precipitation employ a number of different ap-
proaches, which include (i) pattern-matching-, (ii) overlap-
and (iii) advection-based techniques, as well as combina-
tions of the aforementioned. In pattern-matching approaches
(Einfalt et al., 1990; Dixon and Wiener, 1993), the precipita-
tion fields at successive time steps are compared and object
motions are determined based on spatial correlation or some
other optimization method which matches objects with sim-
ilar characteristics. With overlap-based methods (Morel and
Senesi, 2002; Hering et al., 2004; Davis et al., 2006), the
aim is to find object footprints which are contiguous in both
space and time (i.e. spatial overlap at successive time steps).
This approach may, in certain cases, be unsuitable for appli-
cation with radar data: if the scans are too infrequent, con-
tiguity will be lost; even in models, very small objects may
also not overlap at successive time steps. In the advection-
based approach, the expected position of the object is esti-
mated based on Lagrangian extrapolation from the previous
time step(s). Extrapolation may be based on, for example,
mid-tropospheric flow (Purr et al., 2019; Brendel et al., 2014;
Moseley et al., 2013), optical flow methods (He et al., 2019;
Muñoz et al., 2018; Woo and Wong, 2017) or advection of
some otherwise computed velocity field (Stein et al., 2014;
Germann and Zawadzki, 2002). The approach may be unsuit-
able in back-building situations (Parodi et al., 2017), where
cold-pool outflows cause the convective system to propagate
against the direction of flow.

The desire to track convective objects naturally raises the
question of what exactly a convective object is and how it
should be defined. For tracking purposes, convective objects
are typically defined based on exceedance of three thresh-
old minima: (1) minimum precipitation intensity, (2) min-
imum area and (3) minimum lifetime. Some tracking al-
gorithms employ a fourth criterion, whereby precipitation
must also be identifiable as convective, e.g. based on cloud-
top temperatures (Chen et al., 2019), precipitation gradients
(Brendel et al., 2014) or mid-tropospheric dynamics (Poujol
et al., 2020b). The choices of the aforementioned thresholds
vary considerably in the literature: minimum intensities from
0.1 mm h−1 (Li et al., 2020) to 30 mm h−1 (Caillaud et al.,
2021); area thresholds as low as 2 or 4 km2 (Moseley et al.,
2013; Stein et al., 2014) and as high as 32 000 km2 (Prein
et al., 2017); and time thresholds of 10 min (Moseley et al.,
2013), 30 min (Burghardt et al., 2014) or even longer in low-
temporal-resolution data (Li et al., 2020). While it seems ob-
vious that the choice of how to define a convective object will
impact the climatological statistics of certain object proper-
ties (e.g. Müller et al., 2022), what is not clear is if these
choices may also impact the climate-change response of con-
vective objects’ characteristics. The same question may also
be posed of the chosen tracking method.

To investigate these questions, we employ the pseudo-
global-warming (PGW) method (Schär et al., 1996) to per-
form high-resolution ensemble climate-change simulations
with a convection-permitting model (CPM). Our PGW en-
semble covers a 2-week period of exceptionally high thun-
derstorm activity over central Europe (Piper et al., 2016).
CPMs offer an ideal tool to investigate such questions, as
they explicitly represent deep convection. In our study re-
gion, CPMs have been shown to add value for the represen-
tation of both the diurnal convective cycle (Meredith et al.,
2021; Brisson et al., 2016b) and intense convective pre-
cipitation (Fosser et al., 2015; Knist et al., 2018). Impor-
tantly for the tracking of convective objects, CPMs – here,
the COSMO-CLM (Consortium for Small-scale Modeling in
CLimate Mode; Rockel et al., 2008) – can realistically repre-
sent many aspects of subhourly precipitation from both Eu-
lerian (Meredith et al., 2020) and Lagrangian (Brisson et al.,
2018; Purr et al., 2019) perspectives. Using two different
tracking methods, based on the overlap and advection ap-
proaches, we track all convective objects in the aforemen-
tioned (present and future) PGW ensemble. The tracking is
repeated using different options for defining a convective ob-
ject: the thresholds of minimum intensity, area and lifetime
discussed above are systematically varied. The aim is to see
how sensitive the warming response of different object char-
acteristics is to the chosen tracking method and the manner
in which a convective object is defined.

In the main Results section (Sect. 4), our purpose is to pose
the following question. In the presence of a climate-change
signal, can projected changes in the characteristics of convec-
tive cells be sensitive to the choice of tracking algorithm or
to how a convective object is defined? We are thus interested
in differences in the climate-change signal, rather than pre-
cisely determining the magnitude of convective objects’ re-
sponse to climate change in our region. In Sect. 5, we use our
PGW simulations to explore how – based on any sensitivities
identified in the preceding section – Lagrangian projections
might be analysed so that projections are less sensitive to the
criteria used for detecting a convective object.

2 Study period

Our study makes use of a 2-week period of unusually
high convective activity over Germany, from 26 May to
9 June 2016 and analysed in detail in Piper et al. (2016). The
exceptional number of thunderstorms over an extended pe-
riod led to flash flooding and serious structural damage in
many locations (e.g. Bronstert et al., 2018). The study pe-
riod can be roughly split into two parts: a first part in which
convection was caused by a strong synoptic forcing (Fig. 1a)
and a second in which weak forcing (Fig. 1b) gave rise to
a daily cycle of instability building over large areas, fol-
lowed by intense convection in the late afternoon and evening
(Hirt and Craig, 2021). Owing to its elevated levels of both
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weakly and strongly forced convection, the period has pre-
viously been used as a test case in numerous studies of con-
vection in kilometre-scale models (Baur et al., 2018; Rasp
et al., 2018; Keil et al., 2019; Hirt et al., 2019; Hirt and Craig,
2021). The period of strong synoptic forcing included south-
easterly advection of warm and moist air into Germany and
large-scale uplift from a strong potential vorticity anomaly
on 29 May, followed by a number of near-stationary surface
lows over central Europe under a 500 hPa cut-off low. The
weakly forced convection occurred under an upper-level sta-
tionary ridge. Further discussion is available in the aforemen-
tioned references.

3 Methods

3.1 Climate simulations

We perform 18-member ensemble regional climate model
(RCM) simulations of our study period using the PGW ap-
proach (Schär et al., 1996) at a convection-permitting reso-
lution (0.025◦, ∼ 2.8 km). In the PGW approach, an event
or period is first dynamically downscaled from a reanalysis
under present conditions. The downscaling is then repeated
with altered RCM initial and boundary conditions which re-
flect projected changes in the boundary variables (or a subset
thereof). This approach has previously been employed in nu-
merous studies on both climate and event-based timescales
(Prein et al., 2017; Lackmann, 2013; Rasmussen et al., 2014;
Kröner et al., 2017; Keller et al., 2018; Hibino et al., 2018).
All of our simulations are performed with COSMO-CLM
(Rockel et al., 2008), version 5.0_clm16.

The first modelling step (present climate) involves multi-
reanalysis downscaling of ERA-Interim (Dee et al., 2011)
and MERRA-2 (Modern-Era Retrospective analysis for Re-
search and Applications; Gelaro et al., 2017) to 0.11◦ res-
olution from 26 May 2016 to 9 June 2016 over a pan-
Europe domain (Fig. 1). An ensemble is then created using
the domain-shift technique (e.g. Rezacova et al., 2009; Par-
dowitz et al., 2016; Noyelle et al., 2019). In this approach, a
central domain is defined and the domain centre is system-
atically shifted five grid cells (∼ 0.55◦) in the cardinal and
ordinal directions N, NE, E, SE, S, SW, W and NW, giving
perturbed initial and boundary conditions for each ensemble
member (see Rezacova et al., 2009, or Mazza et al., 2017, for
illustrative schematics). The shifting is performed for both
reanalyses, giving in total 18 members for the present cli-
mate.

The second modelling step (PGW) involves repeating
the 0.11◦ downscaling with modified boundary conditions
based on projected changes under an end-of-century RCP8.5
scenario (Representative Concentration Pathway; Van Vu-
uren et al., 2011), as described above. This high-end sce-
nario is chosen in order to ensure a strong warming sig-
nal as the basis for our sensitivity tests. We derive an en-

semble mean climate-change signal from historical (1970–
1999) and future (2070–2099) periods based on three 0.11◦

COSMO-CLM simulations from the EURO-CORDEX ex-
periment (European branch of the Coordinated Regional Cli-
mate Downscaling Experiment; Jacob et al., 2014). The three
EURO-CORDEX runs were downscaled from CMIP5 (Cou-
pled Model Intercomparison Project; Taylor et al., 2012)
simulations of the MPI-ESM-LR (r1; Max Planck Institute
Earth System Model – low resolution; Giorgetta et al., 2013),
EC-Earth (r12; European community earth system model;
Hazeleger et al., 2012) and CNRM-CM5 (r1; Centre National
de Recherches Météorologiques climate model 5; Voldoire
et al., 2013) global models. A 31 d running mean of the re-
sulting climate-change signal (Fig. 1c) is added to the ini-
tial and lateral boundary conditions of our 0.11◦ simulations
for all variables (e.g. temperature, specific humidity, pressure
and winds).

Finally, all present and PGW members are further down-
scaled to 0.025◦ resolution over the COSMO-DE domain
(Fig. 1), giving an 18-member CPM ensemble from 27 May
to 9 June 2016 (14 d); for analysis, the first 4 h are discarded
for spin-up. Note that the COSMO-DE domain is fixed in
space; i.e. it is not shifted like the 0.11◦ domain. Deep con-
vection is explicitly resolved by the model, while shallow
convection is parameterized based on a modified Tiedtke
scheme (Tiedtke, 1989). All model settings are taken from
the standard configuration of the German Weather Service,
and precipitation output is saved every 5 min. Aside from the
added value of COSMO-CLM, and CPMs in general, dis-
cussed in the Introduction, shortcomings in COSMO-CLM
do still remain. Keil et al. (2014) reported insufficient con-
vective triggering under conditions of weak synoptic forc-
ing, while Purr et al. (2019) reported an underestimation of
mean precipitation intensity in long-living, extreme convec-
tive objects and a general overestimation of the lifetime of
convective objects. The results presented below are all based
on the 0.025◦ CPM ensemble.

3.2 Tracking algorithms

We make use of two tracking algorithms. In the first, convec-
tive objects are tracked based on advection by the steering
flow; we refer to this algorithm as ADV. In the second, con-
vective objects are tracked based on the overlap method; we
refer to this algorithm as OVER. These algorithms are cho-
sen (i) because they are representative of two standard ap-
proaches to tracking convective objects (i.e. advection- and
overlap-based tracking) and (ii) for their low levels of com-
plexity, facilitating generalizability of the results.

The ADV algorithm is based on the method of Bren-
del et al. (2014), which was developed for tracking convec-
tive objects in radar data and was adapted for convection-
permitting models by Brisson et al. (2018). The OVER algo-
rithm, on the other hand, is a simple temporal-overlap proce-
dure. The algorithms have been summarized in a schematic
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Figure 1. The 500 hPa geopotential height anomaly (gpdm, shading; reference is the 1979–2015 mean) and sea level pressure (hPa, white
lines) averaged over the periods (a) 29 May–3 June and (b) 5–8 June 2016. The maps cover the spatial extent of the 0.11◦ simulation domain,
and the solid and dashed yellow lines mark the 0.025◦ simulation domain and analysis region, respectively. (c) The climate-change signals of
temperature (T; red line) and specific humidity (QV; blue line) added to the initial and boundary conditions of the 0.11◦ PGW simulations.
The signal is computed based on an area average over the 0.11◦ domain; change profiles for winds and pressure, as well as equivalent plots
on height levels, are presented in Fig. S1.

Figure 2. Schematic illustrating the (a) ADV and (b) OVER algo-
rithms. In ADV, the red vectors (emanating from the cell’s centre of
mass) represent the estimated displacement of the convective cell
based on the steering flow. The yellow dashed circle represents the
search area, with radius r , in which the displaced cell is sought. The
search radius is proportional to the magnitude of the displacement
vector. In OVER, the area between the dashed and solid lines marks
the cell’s area of overlap at consecutive time steps. See also Brisson
et al. (2018) for a schematic of the Brendel et al. (2014) algorithm.

(Fig. 2). For both algorithms, non-convective precipitation is
first masked out using the method of Poujol et al. (2020b).
All precipitation below a chosen threshold (Pmin) is also
masked out. Objects are then identified as contiguous pre-
cipitation areas exceeding a minimum chosen area (Amin),
based on the number of grid boxes within the object. Objects
whose lifetime is shorter than a chosen threshold (Tmin) are
discarded, as are objects which are not fully in the domain.

In ADV (Fig. 2a), once an object has been identified, its
position at the next time step is estimated based on the steer-
ing flow, here the wind velocity averaged across the 500,
700 and 850 hPa levels. From the expected location at the
next time step, convective objects are searched within a de-
fined search radius whose length is proportional to the wind
speed (see Brendel et al., 2014). For the object nearest to the
expected location, the procedure is further iterated until no
object is found. For object splits, the object nearest to the

expected location is chosen, while the remaining object(s)
is (are) considered a new object(s). For object mergers, the
largest of the original objects is continued, while the other
track is ended.

In OVER (Fig. 2b), the spatial footprint of an identified
object is first determined and an overlap between this foot-
print and any footprints at the next time step is sought. The
process is further iterated until no overlap is found. For both
object splits and mergers, the object with the largest overlap
(by precipitation volume) is continued, while the other object
is considered new (splits) or to have ended (mergers).

Both algorithms compute the following lifetime diagnos-
tics for each object: mean and maximum areal precipitation
intensity (Pavg, Pmax), mean and maximum object area (Aavg,
Amax), mean and maximum integrated precipitation volume
(Volavg, Volmax), lifetime (T ), total distance travelled (D) and
average speed (S). We use 5 min precipitation totals in our
study.

3.3 Analysis

The ensemble setup of 14 d CPM simulations over the
COSMO-DE domain provides an ideal platform to test
a wide range of options for defining a convective object
and comparing two tracking algorithms. The aim is to see
whether, in the presence of climate warming, the tracking al-
gorithm or how a convective object is defined may impact the
magnitude of any detected changes in the characteristics of
convective objects. To this end, we analyse the object charac-
teristics Pavg, Pmax, Aavg, Amax, Volavg, Volmax, T , S and D
over the lifetime of each object. For each ensemble member,
we obtain the median value of these object characteristics.
Present and PGW ensemble means are then computed, al-
lowing for the response to warming of each object character-
istic to be quantified (similar analysis for the 0.9 quantile is
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shown in the Supplement). In addition to the characteristics
of convective objects, we also consider the total number of
convective objects (Nobj) and the total volume of convective
precipitation (Ptot). Our analysis region is removed from the
boundaries of the 0.025◦ simulation domain (Figs. 1 and 3)
in order to allow for sufficient spin-up of convective features
(Brisson et al., 2016a).

Before varying the thresholds for identifying a convective
object, we first define a reference setup as follows. (1) The
minimum object area (Amin) is eight grid boxes. Each grid
box has an area of ∼ 7.7 km2; thus Amin ∼ 62 km2 and is of
the same order of magnitude as used in previous Lagrangian
studies over Germany (Purr et al., 2019, 2021). (2) The min-
imum precipitation intensity (Pmin) has an equivalent hourly
rate of 8.5 mm h−1, chosen based on the work (over Ger-
many) of Brendel et al. (2014) and the German Weather Ser-
vice’s rainfall intensity classification (DWD, 2022). (3) The
minimum lifetime (Tmin) is 15 min, based on Moseley et al.
(2013), who showed that intense convective precipitation
over Germany needs at least 10 min after cell formation to
reach peak intensity. The object thresholds are then varied
around the reference settings Amin and Pmin, giving ranges
for Amin of 2i grid boxes, where i = 1. . .6, and for Pmin of
4.5, 6.5, 8.5, 10.5 and 12.5 mm h−1. The Tmin threshold is in-
creased upwards from the reference, giving values of 15, 30,
45, 60, 90 and 120 min. Results for the reference settings are
shown in Table 1. Additionally, the impact of the precipita-
tion data’s spatiotemporal resolution is also investigated.

3.4 Uncertainty and significance

To test and conveniently display the statistical significance
of any differences in the detected change signals, we employ
bootstrap resampling in conjunction with the confidence in-
tervals (CIs) proposed by Goldstein and Healy (1995). All
ensemble members are first resampled 10 000 times with re-
placement, and the change signal is re-computed each time,
giving a distribution of 10 000 changes. Under the normal ap-
proximation, the bootstrap CIs for the statistic ti can be con-
structed as θi,α/2, θi,1−α/2 = ti ± zασ (Davison and Hinkley,
1997), where α is the two-tailed probability, zα is the corre-
sponding positive Gaussian quantile and σ is the standard de-
viation. In the case of two change statistics ti and tj , their dif-
ferences will be statistically significant at level α if the con-
dition |ti − tj |/

√
σ 2
i + σ

2
j > zα is satisfied. Their CIs, mean-

while, will be non-overlapping if |ti − tj |/(σi + σj ) > zα .
Rewriting the left-hand side of the latter in terms of the for-
mer, it can be shown that differences significant at level α
will have non-overlapping CIs constructed as

θi|j,β/2, θi|j,1−β/2 = ti|j ± zβσi|j , (1)

where

zβ = zα

√
σ 2
i + σ

2
j

σi + σj
. (2)

This can be repeated across multiple categories to compute a
single zβ , which is the average taken across all pairs i,j ; each
category i ∈ Z+ then has CIs ti±zβσi (Goldstein and Healy,
1995). Statistically significant differences between the dif-
ferent change signals can hence easily be discerned from an
absence of overlap between the Goldstein–Healy CIs. In our
study, we take α = 0.95.

4 Results: sensitivity of the climate-change signal

4.1 Reference setup

We begin with a reference setup for both algorithms
(ADV and OVER): a minimum area Amin = 8 grid
boxes, a minimum-precipitation-intensity threshold Pmin =

8.5 mm h−1 (0.7 mm/5 min) and a minimum lifetime Tmin =

15 min. This setup serves as a threshold “base state” at which
in the following sections at least one threshold (Amin, Pmin,
Tmin) is held constant, while the remaining threshold(s) vary
singularly or jointly. Under this setup (Table 1), we find en-
semble medians of about 4500 objects per member, which
are concentrated in the western half of the analysis region
(Fig. 3). Median lifetimes and distances travelled for the ob-
jects are roughly 35 min and 12 km, respectively, for each al-
gorithm. For the lifetime object mean precipitation rates and
areas, an equivalent hourly rate of 18 mm h−1 and an area
of 96 km2 are found. In the PGW ensemble, the total num-
bers of objects increases by over 45 %. Changes in the ob-
ject characteristics in response to the PGW signal range from
−6 % to+38 % (Table 1), depending on the object character-
istic. The greatest increase is seen in distance travelled, with
minimal change in object lifetime. Object areas and volumes
increase, with areal mean precipitation intensity decreasing.
The net effect of the aforementioned changes on total con-
vective precipitation is an increase of roughly 87 % (ADV)
to 98 % (OVER), which is the most noticeable difference be-
tween the two tracking methods. Amongst all change sig-
nals, no statistically significant differences between ADV
and OVER are evident.

4.2 Minimum size of object (Amin)

In this subsection, we hold Tmin and Pmin constant at their
reference values. Amin (the minimum-area threshold) is var-
ied, with values of Amin = 2i grid boxes, where i = 1. . .6
(Fig. 4). For Pavg and Pmax (the object lifetime mean and
maximum precipitation intensity), the minimum object size
has no significant impact on the response to warming; this
is mostly true for the object lifetime too. For the remain-
ing metrics, however, the Amin threshold has a significant
impact on the resulting climate-change signal. For volume
(Vavg, Vmax), area (Aavg, Amax), distance travelled and aver-
age speed of the objects, the strongest climate-change sig-
nal is found for the lowest Amin, with the weakest signal for
the highest Amin. For the aforementioned object characteris-
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Table 1. Present, future and relative change values of Nobj and all object properties, for the ADV and OVER tracking algorithms. The results
are based on the reference setup (Sect. 4.1): Amin = 8 grid boxes, Pmin = 8.5 mm h−1 and Tmin = 15 min. For display purposes, the table
entries have been rounded, which explains any slight deviations of the relative changes from that expected based on the present and future
entries. Square brackets denote confidence intervals, computed as described in Sect. 3.4.

Present Future Change (%)

ADV OVER ADV OVER ADV OVER

Nobj 4607 4594 6771 6745 +47.0 [42.2, 51.8] +46.8 [41.9, 51.7]
T (min) 35.0 35.0 35. 35.6 +1.2 [−0.1, 2.4] +1.6 [0.0, 3.2]
D (km) 11.7 11.7 15.9 16.1 +36.7 [34.3, 39.1] +37.8 [35.6, 40.0]
S (m s−1) 5.9 5.9 7.7 7.7 +30.3 [27.8, 32.8] +30.5 [27.8, 33.1]
Aavg (km2) 95.4 95.1 102.0 101.7 +6.9 [6.0, 7.9] +6.9 [5.9, 7.8]
Amax (km2) 125.3 125.2 136.9 136.9 +9.3 [7.8, 10.8] +9.3 [7.8, 10.8]
Pavg (mm h−1) 18.0 18.1 17.0 17.0 −5.6 [−6.7, −4.5] −5.6 [−6.7, −4.5]
Pmax (mm h−1) 45.3 45.5 43.1 43.4 −4.8 [−6.6, −3.0] −4.6 [−6.4, −2.8]
Vavg (105 m3) 1.44 1.44 1.50 1.50 +3.8 [2.6, 5.1] +3.9 [2.7, 5.1]
Vmax (105 m3) 1.93 1.93 21.0 21.0 +8.5 [6.9, 10.1] +8.6 [7.0, 10.2]
Ptot (1010 m3) 2.01 1.86 3.75 3.68 +87 [72, 102] +98 [87, 110]

Figure 3. Total number of objects counted at each grid box for ADV in the (a) present and (b) PGW ensembles and OVER in the (c) present
and (d) PGW ensembles. Results are based on the algorithms’ reference setup. The analysis region is as denoted by the dashed yellow boxes
in Fig. 1. Note that a higher number of objects does not necessarily correspond to higher precipitation; e.g. one large system could cause
more precipitation than multiple smaller cells.

tics, the response to warming using the lowest Amin thresh-
old (2 grid boxes) is an order of magnitude greater than with
the greatest Amin threshold (64 grid boxes). Right across the
different Amin thresholds tested, statistically significant dif-
ferences in the magnitude of the climate-change signal are
found (as evident from the non-overlapping Goldstein–Healy
CIs; see Methods). In some cases (e.g. Vavg, Vmax), even the
sign of the climate-change signal is different. For the number
of convective objects (Nobj), the trend is reversed: the higher
the Amin threshold, the stronger the climate-change signal,
again with statistically significant differences. The different
tracking methods are found to have no statistically significant
difference in their computed climate-change signals.

An important point to note is that depending on the chosen
Amin threshold, the physical interpretation for why total con-
vective precipitation increases in the warmer climate (Fig. 7)

could be different. For a small Amin, the increase in convec-
tive precipitation would appear to be driven by the area and
volume of the objects increasing. For a larger Amin, on the
other hand, the increase in total precipitation would appear
to be driven by strong growth in the number of convective
objects. That is not to say the one choice of Amin is “wrong”
or another “correct” but rather to recognize that the role of
object characteristics in changing total convective precipita-
tion is conditional on how a convective object is defined and
that results should be interpreted in this context. These dif-
ferences are worth bearing in mind when drawing inferences
about future changes in the characteristics of convective pre-
cipitation.
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Figure 4. Climate-change signals of different object properties as a function of the object’s minimum-area (Amin) criterion, for both al-
gorithms. Change signals which are different with statistical significance at the 0.95 level can be identified based on non-overlapping CIs
(Sect. 3.4), seen as vertical solid (advection) or dashed (overlap) lines. In panel (a), the numbers of objects are shown (i.e. the sample sizes).
Amin is defined in terms of grid boxes, with each grid box having an area of ∼ 7.7 km2. The Amin range thus spans approximately 15 to
493 km2. The values underlying the change signals can be seen in Fig. S2.

4.3 Minimum precipitation intensity of object (Pmin)

In this subsection, Amin and Tmin are fixed at their reference
values, while the precipitation-minimum threshold Pmin is
varied across values of 4.5, 6.5, 8.5, 10.5 and 12.5 mm h−1

(using the equivalent 5 min rate). The choice of Pmin thresh-
old has much less of an impact on the magnitude of the
climate-change signal than varyingAmin. Across the sampled
range of Pmin thresholds, clear statistically significant differ-
ences (Fig. 5) are most evident for diagnostics which char-
acterize the object’s precipitation intensity: Pavg and Pmax
show a monotonic upward trend in their climate-change sig-
nal with increasing Pmin; this is in contrast to varying Amin,
which was shown to have no effect on the climate-change
signals of Pavg and Pmax. Some smaller but statistically sig-
nificant differences are also seen in the object area’s response
to warming (Aavg, Amax; Fig. S3) and in the total number of
objects. For the remaining object characteristics, the range of
tested Pmin thresholds produces very few significant differ-

ences in the response to warming. The speed of the objects
does, however, show a clear monotonically decreasing trend
(Fig. S3), suggesting that over a wider range of Pmin thresh-
olds, significant differences may emerge. As with the Amin
threshold, no statistically significant differences between the
tracking methods are evident.

4.4 Minimum lifetime of object (Tmin)

Here we vary the minimum-lifetime threshold Tmin of the
objects, while keeping Pmin and Amin at their reference val-
ues (Fig. 6b and e); this is then additionally shown for the
smallest and largest values of Amin (2 and 64 grid boxes; see
Fig. S5 for remaining Amin values). Starting with the refer-
ence values of Pmin and Amin, it is found that varying the
minimum-lifetime threshold Tmin has a clear and statistically
significant impact on the magnitudes of the climate-change
signals of the speed, distance travelled and lifetime object
characteristics in both algorithms, as well as for the total
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Figure 5. Climate-change signals of Pavg, Pmax and Nobj as a function of the object’s minimum-precipitation-intensity (Pmin) criterion, for
both algorithms. Change signals which are different with statistical significance at the 0.95 level can be identified based on non-overlapping
CIs (Sect. 3.4), seen as vertical solid (advection) or dashed (overlap) lines. In panel (a), the numbers of objects are shown (i.e. the sample
sizes). Pmin is shown as the equivalent hourly rate based on 5 min intensities. The climate-change signals of the remaining object properties,
as well as the values underlying them, can be seen in Figs. S3 and S4.

number of objects. To a lesser extent, significant differences
are found for the area metrics.

Looking at the smallest and greatest values of Amin, it
is only the speed, distance travelled and lifetime proper-
ties which consistently display climate-change signals that
are sensitive to how an object’s minimum lifetime (Tmin)
is defined. At the lowest Amin threshold (Amin = 2), all di-
agnostics are found to exhibit a climate-change signal with
some degree of sensitivity to the magnitude of Tmin, with the
strongest sensitivities for the aforementioned properties, as
well as the number of objects. As Amin increases, the impact
of Tmin on the magnitude of the climate-change signal gen-
erally decreases and is either eliminated or greatly reduced
by the maximum (Amin = 64 grid boxes; see also Fig. S5).
A likely reason for this is that by removing smaller objects
from the sample, the sample distribution of lifetimes shifts
upwards, a consequence of larger objects also tending to live
longer (Fig. S2b). Successively raising the Tmin threshold
thus has less impact on the sample statistics because in the
upwards-shifted distribution the fraction of objects with life-
times above the Tmin thresholds is higher. Comparing the two
tracking methods, no statistically significant differences are
found between the algorithms.

4.5 Total convective precipitation

Changes in the characteristics of convective objects do not
necessarily inform us about changes in total convective pre-
cipitation. An additional metric of interest in object-oriented
precipitation analysis may thus be the total amount of con-

vective precipitation attributable to the identified objects
(Ptot) and how this responds to warming. By jointly vary-
ing (i) Tmin and Amin and (ii) Tmin and Pmin, a large range of
Ptot responses is found across 132 setups, with a strong Ptot
increase in all cases (Fig. 7), ranging from about +70 % to
+120 %, depending on the combination of the three thresh-
olds. As with the reference setup (Sect. 4.1), considerable
differences are often evident between the two algorithms,
with those for OVER being typically stronger. However, due
to the large range of uncertainty in the magnitude of these
increases, no statistically significant differences between the
tracking methods are found.

A general, though not uniform, pattern of a stronger warm-
ing response with higher Tmin thresholds and lower Pmin
thresholds can be discerned, while no clear influence of the
Amin threshold on the Ptot climate-change signal is evident.
The higher increases in total precipitation with higher Tmin
thresholds mirror the changes seen for the number of objects
as Tmin increases (Fig. 6), suggesting that the latter explains
differences in the climate-change signal of Ptot as Tmin is var-
ied. Higher increases in Ptot as Pmin decreases, meanwhile,
appear to be explained by differences in the Aavg signal as
Pmin is varied (Fig. S3f).

4.6 Spatiotemporal resolution of precipitation data

The preceding results have shown that user-defined thresh-
olds for identifying a convective object can affect the mag-
nitude of the climate-change signal but that the tracking
method appears to have little impact. The latter result, while
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Figure 6. Climate-change signals of all object properties and Nobj, as a function of the object’s minimum-lifetime (Tmin) criterion, for both
algorithms. A statistically significant difference in the climate-change signal against other Tmin thresholds is indicated by a number in the
box centre. The number denotes how many of the other Tmin thresholds have a change signal whose difference is statistically significant
compared to the box in question (maximum= 5). For example, for the combination (d) OVER, Amin = 2, speed and Tmin = 15 min, the
number 3 is present: this means that the climate-change signal for this combination has a statistically significant difference to three of the
remaining five Tmin thresholds of OVER, Amin = 2 and speed. Confidence intervals, computed as in Sect. 3.4, are given in the left-hand
corners of each box. There are no statistically significant differences between the algorithms. The results are shown for three values of Amin,
with the remaining values of Amin found in Fig. S5 and the values underlying the change signal in Fig. S6.

encouraging, merits deeper investigation. Analysis so far has
been based on 5 min precipitation sums. Here we first inves-
tigate the impact of the model data’s temporal resolution by
aggregating the 5 min accumulations to 15, 30, 45 and 60 min
totals while keeping the reference object thresholds.

A dependence of the climate-change signal on the cho-
sen thresholds (here, data temporal resolution) is once again
found. Significant differences emerge, however, between
the climate-change signals of the two tracking algorithms
(Fig. 8). They are most pronounced for the distance and
speed metrics. Differences tend to grow as data temporal res-
olution decreases, with a few exceptions. One possibility is

that a disconnect between (i) where an object is predicted to
advect to and (ii) the largest spatial overlap grows as tempo-
ral resolution falls: the wind field, for example, on which the
advection is based is simply an hourly instantaneous value.
Another factor may be a failure of smaller, fast-moving ob-
jects to overlap at successive time steps over longer accu-
mulation periods, thus prematurely terminating tracks. Ei-
ther way, both of these adverse influences would be exacer-
bated in a heterogeneous precipitation field, i.e. with lots of
small objects rather than fewer but larger convective systems.
This is supported by repeating the analysis using the low-
est and highest Amin thresholds, namely 2 and 64 grid boxes
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Figure 7. Change (%) in total convective precipitation in response to warming signal, for both algorithms. The change is based on the total
precipitation attributable to all identified objects. In panels (a) and (c), Amin and Tmin are jointly varied, with Pmin at its reference value.
In panels (b) and (d), Pmin and Tmin are jointly varied, with Amin at its reference value. Confidence intervals, computed as in Sect. 3.4, are
given in the left-hand corners of each box. Statistically significant differences are denoted by a number in the middle of each square, as in
Fig. 6. For example, for the case (c) OVER, Amin = 2 grid boxes and Tmin = 120 min, the number 5 is present: this means that the change
signal for this combination has a statistically significant difference to 5 of the remaining 35 configurations in (c). Note different colour-bar
minima for panels (a, c) and (b, d).

(Figs. S7 and S8). At the lowest Amin, differences between
the tracking algorithms grow sharply; at the highest Amin,
differences disappear. This suggests that threshold choices
which lead to a greater number of small objects and a more
fragmented precipitation field require precipitation data with
a higher temporal resolution. If this is the case, one correc-
tive measure may be to apply a smoothing to the precipita-
tion field for the purpose of tracking (and correspondingly
reducing Pmin) but use the unsmoothed field for computing
the object characteristics (e.g. Müller et al., 2022).

Another influencing factor on the climate-change signal
may be the spatial resolution of the precipitation data. This
was tested by aggregating the model data to coarser grids,
with grid boxes of dimension 2×2, 3×3, 4×4 and 5×5 na-
tive (0.025◦) grid cells. Here, significant differences between
the tracking methods were uncommon, though did appear in
isolated cases (Fig. S10).

5 Analysis of future projections

In this section, we use our PGW experiment as a case study
for exploring how Lagrangian projections might best be pre-
sented based on the lessons of Sect. 4.2 to 4.5. As it has
been shown in previous sections that the choice of tracking
method has no impact on our results with 5 min data resolu-
tion, we will for clarity show results for just the ADV algo-
rithm. It should firstly be noted that our 14 d study period of
high convective activity is not representative of climatolog-
ical conditions: this is further underlined by contrasting our
projections with those of Purr et al. (2021). The change sig-
nals in our case study are thus illustrative and only indicative
for the specific synoptic conditions present during the simu-
lation period.

In Sect. 4.2 to 4.5 it was shown that the choice of thresh-
olds (Amin, Pmin, Tmin) for defining a convective object can
significantly impact the magnitude of the climate-change sig-
nal. We therefore propose analysing the output of the track-
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.

Figure 8. Climate-change signals of different object properties as a function of the precipitation data’s temporal resolution, for both algo-
rithms (Amin, Pmin and Tmin are kept at their reference values). Change signals which are different with statistical significance at the 0.95
level can be identified based on non-overlapping CIs (Sect. 3.4), seen as vertical solid (advection) or dashed (overlap) lines. In panel (a),
the numbers of objects are shown (i.e. the sample sizes). For object properties with a median value of zero in the present climate, a percent
change signal cannot be defined, hence the missing values for the 60 min distance and speed. Note that to ensure a fair comparison, only
objects with a lifetime of at least 60 min are considered. Similar figures using Amin thresholds of 2 and 64 grid boxes are presented in the
Supplement (Figs. S7 and S8). The values underlying the percent change are presented in Fig. S9

ing algorithm by first partitioning the data into bins delin-
eated by different values of Aavg, Pavg or T , the metrics on
which the object thresholds are based. To maximize the range
covered by all bins, tracking setups with each of the three
lowest thresholds – Amin = 2 grid boxes, Pmin = 4.5 mm h−1

and Tmin = 15 min – alongside their counterpart reference
thresholds are used (Fig. 9).

Partitioning the tracks based on object mean intensity, area
or lifetime reveals the potential for a given object property
to exhibit quite varied warming responses. Taking mean ob-
ject intensity (Fig. 9a), the climate-change signal of most
object properties responds non-linearly to increasing object
intensity in our case study. Maximum increases emerge for
moderate-intensity objects, with minimum increases for low
and high intensities. Some object properties even exhibit the
potential for a change in the sign of the warming response as
intensity varies: here, the change in object area flips to neg-

ative for the most intense cases. Partitioning based on object
mean area (Fig. 9b), meanwhile, shows a completely differ-
ent response spectrum: climate-change signals which behave
asymptotically as object area increases. This behaviour sug-
gests that the spatial homogeneity of the precipitation field
is likely an important factor in the sensitivity of Lagrangian
projections to object thresholds; i.e. larger area thresholds
(Amin) give projections whose magnitude is less sensitive
to further increases in the area threshold. Finally, the parti-
tioning based on object lifetime (Fig. 9c) reveals yet another
response spectrum of a different character to the previous:
object properties which (mostly) display little sensitivity to
increasing object lifetime.

The spectrum-based analysis (Fig. 9) offers insights not
evident from the analyses in Sect. 4.1 to 4.5, which help
to explain the mechanisms by which total precipitation in-
creases in our case study: (1) the total number of objects in-
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creases in (almost) all cases; (2) future objects have larger
areas and volumes, regardless of how long they live or how
intense they are; (3) despite this, objects of all areas and life-
times have lower mean intensities; (4) it can thus be con-
cluded that the increase in Ptot is driven by the combined
effect of more objects and an increase in the area of these
objects; and (5) the increase in object volumes despite a de-
crease in intensity shows that the effects of more objects and
higher areas are dominant over the reduction in mean object
intensity, which acts in the opposing direction. While a sim-
ilar interaction of these mechanisms may seem plausible for
longer timescales, such a conclusion would require climate-
length simulations. Of interest, perhaps, is that in agree-
ment with the observational study of Wasko et al. (2016) and
modelling experiments of Armon et al. (2022) and Caldas-
Alvarez et al. (2022), the area of the most intense objects is
actually found to decrease and their maximum local precipi-
tation intensity found to increase.

6 Summary and conclusions

Aided by the growing use of kilometre-scale climate mod-
els (Lucas-Picher et al., 2021), Lagrangian methods for
analysing the response of convective precipitation to cli-
mate change have become increasingly popular (e.g. Prein
et al., 2017; Poujol et al., 2020a; Purr et al., 2021). This
object-oriented approach is particularly useful for studying
changes in the characteristics of convective cells. In our
study, we have tested the sensitivity of Lagrangian projec-
tions to the choice of (i) tracking algorithm and (ii) how
a convective object is defined. Two simple tracking algo-
rithms, each representative of a common approach to La-
grangian analysis, were employed to track convective objects
in convection-permitting PGW ensemble simulations, allow-
ing for their respective climate-change signals to be com-
pared. Furthermore, for each algorithm, the sensitivity of the
climate-change signal to how a convective object is defined
was examined by systematically varying the threshold crite-
ria for identifying a convective object, namely: minimum size
(Amin), intensity (Pmin) and lifetime (Tmin). In total, 132 con-
figurations were tested. Our PGW simulations encompassed
a 14 d period with elevated levels of both strongly and weakly
forced convection (Sect. 2), offering a diverse representation
of convective objects against which the different algorithms
and configurations could be tested.

Our first main result is that – as long as the precipitation
data are of sufficiently high temporal resolution – the track-
ing method appears to have no significant impact on how the
properties of convective objects or the total number of con-
vective objects respond to climate change. Area thresholds
which permit a higher number of small objects, thus cre-
ating a less homogenous precipitation field, were shown to
necessitate input data with a higher temporal resolution; oth-
erwise the climate-change signals diverge. Adjusting for this

caveat, the representative advection- and overlap-based algo-
rithms which we implemented produce very similar climate-
change signals for all object properties, with no statistically
significant differences found. Additional tests of this conclu-
sion using a set of climate-length simulations, those used
in Meredith et al. (2019), show that the insensitivity of the
climate-change signal to the tracking method remains con-
sistent (Fig. S11 and accompanying discussion). This con-
clusion likely extends to the pattern-matching approach (e.g.
Einfalt et al., 1990): a precipitation field with larger objects
and, hence, more spatial homogeneity is less likely to see
large changes in structure over short temporal scales.

Our second main result is that, unlike the tracking algo-
rithm, the definition of what constitutes a convective object
has a potentially large impact on the climate-change signal
for all object properties, as well as for changes in the total
number of objects. The thresholds of minimum precipitation
intensity (Pmin), minimum size (Amin) and minimum lifetime
(Tmin) for identifying a convective object were all found to be
relevant. How the climate-change signal responds to varying
these thresholds was found to depend on the object property
under investigation. For example, the minimum object size
had no significant impact on changes in the object’s precip-
itation intensity but did lead to different climate-change sig-
nals for changes in the total number of objects, as well as
changes in object properties like the integrated precipitation
volume and distance travelled. Similarly, the threshold for
minimum intensity affected the climate-change signal of ob-
ject intensity but was not relevant for e.g. changes in the ob-
ject volume. Changes in total convective precipitation were
also sensitive to how an object is defined. As discussed in
the Introduction, the definition of what constitutes a convec-
tive object shows considerable variance in the literature. An
open question in climate-change research is whether the spa-
tial extent of convective storms will increase or decrease with
warming (Fowler et al., 2021). Our results suggest that, at
least in some regions, the answer may be dependent on how
a convective storm is defined.

The results for higher quantiles are generally as expected
based on those described above for the median. An exception
is for the climate-change signal of precipitation intensity as
Pmin increases, which sees a levelling off at higher thresh-
olds. Otherwise, the main difference is that, in many cases,
the uncertainty in the climate-change signal grows so that the
number of statistically significant differences based on dif-
ferent object definitions reduces (Figs. S13–S15 and accom-
panying discussion). Uncertainty due to the higher quantiles
would be expected to decrease with a larger sample of con-
vective objects, e.g. from longer, climate-length simulations.

To reduce the sensitivity of Lagrangian-based projections
to how an object is defined, we suggest performing spectrum-
based analysis by first e.g. binning the data based on ob-
ject area, intensity or lifetime before computing the desired
statistic within each range of interest. Using this approach, a
more comprehensive picture of the physical mechanisms un-
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Figure 9. Ensemble mean projected change (%) in object characteristics under the RCP8.5 scenario as a function of (a) object intensity,
(b) object area and (c) object lifetime. Note the logarithmic x axes in panels (b) and (c). In panels (a), (b) and (c), Pmin, Amin and Tmin
are set at 4.5 mm h−1, 2 grid boxes and 15 min, respectively, while the remaining thresholds are in each case set to their reference values.
For visual clarity, results are based solely on the ADV algorithm. As in the rest of the paper, results are for median values. Each bin has a
minimum of 50 data points in at least 15 of the 18 ensemble members; members with less than this total are not considered in the calculation.

derlying future changes in precipitation can also be obtained
(Sect. 5). Results will, however, still be lower-bounded by the
object areas, intensities and lifetimes chosen as threshold cri-
teria. Lowering the thresholds will thus expand the range of
the results. Here, the lower limits are dictated by computing
resources and the thresholds relevant for the experiment.

Our results hint that the sensitivity of the climate-change
signal to how an object is defined may, for certain (not all)
object properties, decline as object size increases (Figs. 4, 6,
9b, S4). Were this the case, then studies focused on larger
precipitation systems (e.g. Nissen and Ulbrich, 2017; Prein
et al., 2017) could be expected to lead to higher certainty;
as shown in Sect. 4.6, larger objects also eliminate diver-
gence between the tracking methods stemming from the in-
put data’s temporal resolution. This finding, however, cannot
automatically be extrapolated to other weather situations or
studies at climate timescales and, thus, requires further in-
vestigation. It is similarly true that the sensitivities found for
our test period would not necessarily be the same sensitivi-
ties found in other studies, as our experiment encompasses a
specific period, region and climate-change profile. What we
have demonstrated is the principle that in Lagrangian anal-
yses of convective cells, the climate-change signal of differ-
ent object properties can be sensitive to the conditions set
for identifying an object. This dependency also has conse-
quences for diagnosing the physical mechanisms underly-
ing future changes in total convective precipitation. The rel-
ative importance of specific object properties in interpreting
changes in total convective precipitation will not remain con-
stant if these properties’ climate-change signals respond dif-

ferently to changes in the criteria for detecting an object. As
such, analysing Lagrangian projections by first partitioning
the data based on specific object properties (e.g. intensity,
area, lifetime) can also clarify the underlying mechanisms
by which future precipitation changes.

For researchers studying future changes in convective pre-
cipitation using Lagrangian methods, the first message is
that, amongst the standard approaches, the choice of track-
ing algorithm will have little impact on the results as long
as the precipitation data are not of too-low temporal reso-
lution (“too-low” being dependent on the area criterion for
defining an object). The second message is that the minimum
thresholds for what constitutes a convective object should
be carefully chosen based on what is most appropriate for
(1) the study region and (2) the aims of the study. When mak-
ing such threshold choices, the performance of the model in
the present climate – e.g. by evaluating against radar (Caine
et al., 2013; Raupach et al., 2021) – should also be factored
in. Alongside this, the change signal across a range of ob-
ject intensities, areas and lifetimes should be explored (see
Fig. 9). To conclude, Lagrangian analysis is an important
technique for studying future changes in precipitation. To
make the best use of this approach, the uncertainties in the
climate-change signal associated with how a convective ob-
ject is defined should be examined wherever possible.

Code and data availability. The tracking algorithms were written
using NCL (NCAR Command Language, National Center for
Atmospheric Research) version 6.5 (NCL, 2018) and have been
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deposited (open access) at https://doi.org/10.5281/zenodo.6977074
(Meredith et al., 2022b). The 0.025◦ simulation data have
been archived under an open-access licence at the long-
term archive of the DKRZ (Deutsches Klimarechenzentrum,
German Climate Computing Center) with the permanent
link https://www.wdc-climate.de/ui/entry?acronym=DKRZ_
LTA_1152_ds00302 (last access: 30 January 2023; Meredith
et al., 2022a). The ERA-Interim and MERRA-2 reanalyses
used as lateral boundary forcing are publicly available via
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era-interim (last access: 30 January 2023; Dee et al., 2011) and
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (last access:
30 January 2023; Gelaro et al., 2017), respectively.
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