Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-7339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Vicerectorat de Recerca, Universitat de Barcelona, Barcelona, Spain
INGEO, Università degli Studi “G. d'Annunzio” di Chieti e Pescara, Chieti, Italy
Bruno Pace
INGEO, Università degli Studi “G. d'Annunzio” di Chieti e Pescara, Chieti, Italy
UdA–TechLab Research Center, Università degli Studi “G. d'Annunzio” di Chieti e Pescara, Chieti, Italy
Francesco Visini
Sezione di Pisa, Istituto Nazionale di Geofísica e Vulcanologia, Chieti, Italy
Joanna Faure Walker
Institute for Risk and Disaster Reduction, University College London, London, UK
Oona Scotti
BERSSIN, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
Related authors
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Francesco Visini, Carlo Meletti, Andrea Rovida, Vera D'Amico, Bruno Pace, and Silvia Pondrelli
Nat. Hazards Earth Syst. Sci., 22, 2807–2827, https://doi.org/10.5194/nhess-22-2807-2022, https://doi.org/10.5194/nhess-22-2807-2022, 2022
Short summary
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
Thomas Chartier, Oona Scotti, Hélène Lyon-Caen, Keith Richard-Dinger, James H. Dieterich, and Bruce E. Shaw
Nat. Hazards Earth Syst. Sci., 21, 2733–2751, https://doi.org/10.5194/nhess-21-2733-2021, https://doi.org/10.5194/nhess-21-2733-2021, 2021
Short summary
Short summary
In order to evaluate the seismic risk, we first model the annual rate of occurrence of earthquakes on the faults near Istanbul. By using a novel modelling approach, we consider the fault system as a whole rather than each fault individually. We explore the hypotheses that are discussed in the scientific community concerning this fault system and compare the modelled results with local recorded data and a physics-based model, gaining new insights in particular on the largest possible earthquake.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Cited articles
Bennett, S. E. K., DuRoss, C. B., Gold, R. D., Briggs, R. W., Personius, S. F., Reitman, N. G., Devore, J. R., Hiscock, A. I., Mahan, S. A., Gray, H. J., Gunnarson, S., Stephenson, W. J., Pettinger, E., and Odum, J. K.: Paleoseismic Results from the Alpine Site, Wasatch Fault Zone: Timing and Displacement Data for Six Holocene Earthquakes at the Salt Lake City–Provo Segment Boundary, Bull. Seismol. Soc. Am., 108, 3202–3224, https://doi.org/10.1785/0120160358, 2018.
Boncio, P., Lavecchia, G., and Pace, B.: Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy), J. Seismol., 8, 407–425, https://doi.org/10.1023/B:JOSE.0000038449.78801.05, 2004.
Boncio, P., Pizzi, A., Brozzetti, F., Pomposo, G., Lavecchia, G., Di Naccio, D., and Ferrarini, F.: Coseismic ground deformation of the 6 April 2009 L'Aquila earthquake (central Italy, Mw 6.3), Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL042807, 2010.
Bronk Ramsey, C.: Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program, Radiocarbon, 37, 425–430, https://doi.org/10.1017/S0033822200030903, 1995.
Bronk Ramsey, C.: Bayesian Analysis of Radiocarbon Dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Chang, W.-L., Smith, R. B., Meertens, C. M., and Harris, R. A.: Contemporary deformation of the Wasatch Fault, Utah, from GPS measurements with implications for interseismic fault behavior and earthquake hazard: Observations and kinematic analysis, J. Geophys. Res.-Sol. Ea., 111, B11405, https://doi.org/10.1029/2006JB004326, 2006.
Chiarabba, C., Amato, A., Anselmi, M., Baccheschi, P., Bianchi, I., Cattaneo, M., Cecere, G., Chiaraluce, L., Ciaccio, M. G., De Gori, P., De Luca, G., Di Bona, M., Di Stefano, R., Faenza, L., Govoni, A., Improta, L., Lucente, F. P., Marchetti, A., Margheriti, L., Mele, F., Michelini, A., Monachesi, G., Moretti, M., Pastori, M., Piana Agostinetti, N., Piccinini, D., Roselli, P., Seccia, D., and Valoroso, L.: The 2009 L'Aquila (central Italy) MW 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, https://doi.org/10.1029/2009GL039627, 2009.
Cinti, F. R., Pantosti, D., De Martini, P. M., Pucci, S., Civico, R., Pierdominici, S., Cucci, L., Brunori, C. A., Pinzi, S., and Patera, A.: Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L'Aquila earthquake (central Italy), J. Geophys. Res., 116, B07308, https://doi.org/10.1029/2010JB007988, 2011.
Cinti, F. R., Pantosti, D., Lombardi, A. M., and Civico, R.: Modeling of earthquake chronology from paleoseismic data: Insights for regional earthquake recurrence and earthquake storms in the Central Apennines, Tectonophysics, 816, 229016, https://doi.org/10.1016/j.tecto.2021.229016, 2021.
DuRoss, C. B. and Hylland, M. D.: Synchronous Ruptures along a Major Graben-Forming Fault System: Wasatch and West Valley Fault Zones, Utah, Bull. Seismol. Soc. Am., 105, 14–37, https://doi.org/10.1785/0120140064, 2015.
DuRoss, C. B., Personius, S. F., Crone, A. J., McDonald, G. N., and Lidke, D. J.: Paleoseismic investigation of the northern Weber segment of the Wasatch Fault zone at the Rice Creek Trench site, North Ogden, Utah, in: Paleoseismology of Utah, vol. 18, edited by: Lund, W. R., Utah Geological Survey Special Study 130, ISBN 1-55791-819-8, 2009.
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., and Lund, W. R.: Integration of paleoseismic data from multiple sites to develop an objective earthquake chronology: Application to the Weber segment of the Wasatch fault zone, Utah, Bull. Seismol. Soc. Am., 101, 2765–2781, https://doi.org/10.1785/0120110102, 2011.
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., Hylland, M. D., Lund, W. R., and Schwartz, D. P.: Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA, J. Geophys. Res.-Sol. Ea., 121, 1131–1157, https://doi.org/10.1002/2015JB012519, 2016.
Falcucci, E., Gori, S., Peronace, E., Fubelli, G., Moro, M., Saroli, M., Giaccio, B., Messina, P., Naso, G., Scardia, G., Sposato, A., Voltaggio, M., Galli, P., and Galadini, F.: The Paganica Fault and Surface Coseismic Ruptures Caused by the 6 April 2009 Earthquake (L'Aquila, Central Italy), Seismol. Res. Lett., 80, 940–950, https://doi.org/10.1785/gssrl.80.6.940, 2009.
Faure Walker, J., Boncio, P., Pace, B., Roberts, G., Benedetti, L., Scotti, O., Visini, F., and Peruzza, L.: Fault2SHA Central Apennines database and structuring active fault data for seismic hazard assessment, Sci. Data, 8, 87, https://doi.org/10.1038/s41597-021-00868-0, 2021.
Faure Walker, J. P., Boncio, P., Pace, B., Roberts, G. P., Benedetti, L., Scotti, O., Visini, F., and Peruzza, L.: Fault2SHA Central Apennines Database, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.922582, 2020.
Field, E., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., and Zeng, Y.: The Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), Bull. Seismol. Soc. Am., 3, 1122–1180, https://doi.org/10.3133/ofr20131165, 2014.
Frueh, W. T. and Lancaster, S. T.: Correction of deposit ages for inherited ages of charcoal: implications for sediment dynamics inferred from random sampling of deposits on headwater valley floors, Quat. Sci. Rev., 88, 110–124, https://doi.org/10.1016/j.quascirev.2013.10.029, 2014.
Galli, P., Giaccio, B., and Messina, P.: The 2009 central Italy earthquake seen through 0.5 Myr-long tectonic history of the L'Aquila faults system, Quat. Sci. Rev., 29, 3768–3789, https://doi.org/10.1016/j.quascirev.2010.08.018, 2010.
Galli, P., Giaccio, B., Messina, P., Peronace, E., and Zuppi, G. M.: Palaeoseismology of the L'Aquila faults (central Italy, 2009, Mw 6.3 earthquake): implications for active fault linkage, Geophys. J. Int., 187, 1119–1134, https://doi.org/10.1111/j.1365-246X.2011.05233.x, 2011.
Gómez-Novell, O., Pace, B., Visini, F., Faure Walker, J., and Scotti, O.: Data for “Deciphering past earthquakes from paleoseismic records – The Paleoseismic EArthquake CHronologies code (PEACH, version 1)”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.8434566, 2023.
Goodfriend, G. A. and Stipp, J. J.: Limestone and the problem of radiocarbon dating of land-snail shell carbonate, Geology, 11, 575, https://doi.org/10.1130/0091-7613(1983)11<575:LATPOR>2.0.CO;2, 1983.
Gori, S., Falcucci, E., Di Giulio, G., Moro, M., Saroli, M., Vassallo, M., Ciampaglia, A., Di Marcantonio, P., and Trotta, D.: Active Normal Faulting and Large-Scale Mass Wasting in Urban Areas: The San Gregorio Village Case Study (L'Aquila, Central Italy). Methodological Insight for Seismic Microzonation Studies, in: Engineering Geology for Society and Territory – Volume 5, Springer International Publishing, Cham, 1033–1036, https://doi.org/10.1007/978-3-319-09048-1_197, 2015.
Machette, M. N., Personius, S. F., Nelson, A. R., Schwartz, D. P., and Lund, W. R.: The Wasatch fault zone, Utah – segmentation and history of Holocene earthquakes, J. Struct. Geol., 13, 137–149, https://doi.org/10.1016/0191-8141(91)90062-N, 1991.
McCalpin, J. P., Forman, S. L., and Lowe, M.: Reevaluation of Holocene faulting at the Kaysville site, Weber segment of the Wasatch fault zone, Utah, Tectonics, 13, 1–16, https://doi.org/10.1029/93TC02067, 1994.
Moro, M., Gori, S., Falcucci, E., Saroli, M., Galadini, F., and Salvi, S.: Historical earthquakes and variable kinematic behaviour of the 2009 L'Aquila seismic event (central Italy) causative fault, revealed by paleoseismological investigations, Tectonophysics, 583, 131–144, https://doi.org/10.1016/j.tecto.2012.10.036, 2013.
Pace, B., Visini, F., and Peruzza, L.: FiSH: MATLAB Tools to Turn Fault Data into Seismic-Hazard Models, Seismol. Res. Lett., 87, 374–386, https://doi.org/10.1785/0220150189, 2016.
Personius, S. F., DuRoss, C. B., and Crone, A. J.: Holocene Behavior of the Brigham City Segment: Implications for Forecasting the Next Large-Magnitude Earthquake on the Wasatch Fault Zone, Utah, Bull. Seismol. Soc. Am., 102, 2265–2281, https://doi.org/10.1785/0120110214, 2012.
Roberts, G. P., Raithatha, B., Sileo, G., Pizzi, A., Pucci, S., Walker, J. F., Wilkinson, M., McCaffrey, K., Phillips, R. J., Michetti, A. M., Guerrieri, L., Blumetti, A. M., Vittori, E., Cowie, P., Sammonds, P., Galli, P., Boncio, P., Bristow, C., and Walters, R.: Shallow subsurface structure of the 2009 April 6 Mw 6.3 L'Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar, Geophys. J. Int., 183, 774–790, https://doi.org/10.1111/j.1365-246X.2010.04713.x, 2010.
Schwartz, D. P. and Coppersmith, K. J.: Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res., 89, 5681–5698, https://doi.org/10.1029/JB089iB07p05681, 1984.
US Geological Survey and Utah Geological Survey: Quaternary fault and fold database for the United States, USGS [data set], https://www.usgs.gov/programs/earthquake-hazards/faults (last access: March 2023), 2019.
Valentini, A., DuRoss, C. B., Field, E. H., Gold, R. D., Briggs, R. W., Visini, F., and Pace, B.: Relaxing Segmentation on the Wasatch Fault Zone: Impact on Seismic Hazard, Bull. Seismol. Soc. Am., 110, 83–109, https://doi.org/10.1785/0120190088, 2020.
Weldon, R. J. and Biasi, G. P.: Appendix I – Probability of Detection of Ground Rupture at Paleoseismic Sites, Unif. Calif. Earthq. Rupture Forecast. Version 3 (UCERF 3) Rep., https://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165_appendixI.pdf (last access: March 2023), 2013.
Short summary
Knowing the rate at which earthquakes happen along active faults is crucial to characterize the hazard that they pose. We present an approach (Paleoseismic EArthquake CHronologies, PEACH) to correlate and compute seismic histories using paleoseismic data, a type of data that characterizes past seismic activity from the geological record. Our approach reduces the uncertainties of the seismic histories and overall can improve the knowledge on fault rupture behavior for the seismic hazard.
Knowing the rate at which earthquakes happen along active faults is crucial to characterize the...