Articles | Volume 16, issue 2
https://doi.org/10.5194/gmd-16-621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-621-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A modern-day Mars climate in the Met Office Unified Model: dry simulations
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Denis E. Sergeev
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Nathan Mayne
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Matthew Bate
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
James Manners
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Ian Boutle
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Benjamin Drummond
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Kristzian Kohary
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
Related authors
No articles found.
Sophia Adams, James Manners, Nathan Mayne, Mei Ting Mak, and Eric Hebrard
EGUsphere, https://doi.org/10.5194/egusphere-2025-2908, https://doi.org/10.5194/egusphere-2025-2908, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We perform calculations of photolysis reactions using an existing model but including updated input data. These reactions are important in shaping the composition of our upper atmosphere and that of other planets, for example, controlling ozone formation and destruction. The results of our model are compared with those of previous benchmarks, and rates of various reactions provided to facilitate other researchers in developing accurate schemes to capture photolysis in planetary atmospheres.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829, https://doi.org/10.5194/egusphere-2025-1829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA8GL9, which includes improvements to the represenation of convection and other physical processes. GA8GL9 is used for operational weather prediction in the UK and forms the basis for the next GA and GL configuration.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavčič, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 16, 5601–5626, https://doi.org/10.5194/gmd-16-5601-2023, https://doi.org/10.5194/gmd-16-5601-2023, 2023
Short summary
Short summary
Three-dimensional climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023, https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Cited articles
Aharonson, O., Zuber, M. T., Smith, D. E., Neumann, G. A., Feldman, W. C., and
Prettyman, T. H.: Depth, distribution, and density of CO2 deposition on
Mars, J. Geophys. Res.-Planet., 109, E05004,
https://doi.org/10.1029/2003JE002223, 2004. a
Atri, D., Abdelmoneim, N., Dhuri, D. B., and Simoni, M.: Diurnal variation of
the surface temperature of Mars with the Emirates Mars Mission: A comparison
with Curiosity and Perseverance rover measurements, Monthly Notices of the
Royal Astronomical Society: Letters, 518, L1–L6,
https://doi.org/10.1093/mnrasl/slac094, 2023. a
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007. a, b
Ball, E. R., Mitchell, D. M., Seviour, W. J. M., Thomson, S. I., and Vallis,
G. K.: The Roles of Latent Heating and Dust in the Structure and Variability
of the Northern Martian Polar Vortex, The Planetary Science Journal, 2, 203,
https://doi.org/10.3847/psj/ac1ba2, 2021. a
Banfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R.,
Murdoch, N., Viudez-Moreiras, D., Pla-Garcia, J., Garcia, R. F.,
Lognonné, P., Karatekin, Ã., Perrin, C., Martire, L., Teanby, N., Hove,
B. V., Maki, J. N., Kenda, B., Mueller, N. T., Rodriguez, S., Kawamura, T.,
McClean, J. B., Stott, A. E., Charalambous, C., Millour, E., Johnson, C. L.,
Mittelholz, A., Määttänen, A., Lewis, S. R., Clinton, J.,
Stähler, S. C., Ceylan, S., Giardini, D., Warren, T., Pike, W. T.,
Daubar, I., Golombek, M., Rolland, L., Widmer-Schnidrig, R., Mimoun, D.,
Beucler, E., Jacob, A., Lucas, A., Baker, M., Ansan, V., Hurst, K.,
Mora-Sotomayor, L., Navarro, S., Torres, J., Lepinette, A., Molina, A.,
Marin-Jimenez, M., Gomez-Elvira, J., Peinado, V., Rodriguez-Manfredi, J. A.,
Carcich, B. T., Sackett, S., Russell, C. T., Spohn, T., Smrekar, S. E., and
Banerdt, W. B.: The atmosphere of Mars as observed by InSight, Nat.
Geosci., 13, 190–198, https://doi.org/10.1038/s41561-020-0534-0, 2020. a
Benacchio, T. and Wood, N.: Semi-implicit semi-Lagrangian modelling of the
atmosphere: a Met Office perspective, Communications in Applied and
Industrial Mathematics, 7, 4–25, https://doi.org/10.1515/caim-2016-0020, 2016. a
Bonev, B. P., Hansen, G. B., Glenar, D. A., James, P. B., and Bjorkman, J. E.:
Albedo models for the residual south polar cap on Mars: Implications for the
stability of the cap under near-perihelion global dust storm conditions,
Planet. Space Sci., 56, 181–193, https://doi.org/10.1016/j.pss.2007.08.003,
2008. a
Boutle, I. A., Mayne, N. J., Drummond, B., Manners, J., Goyal, J.,
Hugo Lambert, F., Acreman, D. M., and Earnshaw, P. D.: Exploring the climate
of Proxima B with the Met Office Unified Model, Astron. Astrophys.,
601, A120, https://doi.org/10.1051/0004-6361/201630020, 2017. a
Boutle, I. A., Joshi, M., Lambert, F. H., Mayne, N. J., Lyster, D., Manners,
J., Ridgway, R., and Kohary, K.: Mineral dust increases the habitability of
terrestrial planets but confounds biomarker detection, Nat.
Commun., 11, 2731, https://doi.org/10.1038/s41467-020-16543-8, 2020. a, b, c
Brown, A. J., Piqueux, S., and Titus, T. N.: Interannual observations and
quantification of summertime H2O ice deposition on the Martian CO2 ice south
polar cap, Earth Planet. Sc. Lett., 406, 102–109,
https://doi.org/10.1016/j.epsl.2014.08.039, 2014. a
Chaffin, M. S., Kass, D. M., Aoki, S., Fedorova, A. A., Deighan, J., Connour,
K., Heavens, N. G., Kleinböhl, A., Jain, S. K., Chaufray, J.-Y.,
Mayyasi, M., Clarke, J. T., Stewart, A. I. F., Evans, J. S., Stevens, M. H.,
McClintock, W. E., Crismani, M. M. J., Holsclaw, G. M., Lefevre, F., Lo,
D. Y., Montmessin, F., Schneider, N. M., Jakosky, B., Villanueva, G., Liuzzi,
G., Daerden, F., Thomas, I. R., Lopez-Moreno, J.-J., Patel, M. R., Bellucci,
G., Ristic, B., Erwin, J. T., Vandaele, A. C., Trokhimovskiy, A., and
Korablev, O. I.: Martian water loss to space enhanced by regional dust
storms, Nature Astronomy, 5, 1036–1042, https://doi.org/10.1038/s41550-021-01425-w,
2021. a
Chapman, R. M., Lewis, S. R., Balme, M., and Steele, L. J.: Diurnal variation
in martian dust devil activity, Icarus, 292, 154–167,
https://doi.org/10.1016/j.icarus.2017.01.003, 2017. a
Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., and Millour,
E.: A thermal plume model for the Martian convective boundary layer,
J. Geophys. Res.-Planet., 118, 1468–1487,
https://doi.org/10.1002/jgre.20104, 2013. a, b
Cooper, B., Torre Juárez, M., Mischna, M., Lemmon, M., Martínez,
G., Kass, D., Vasavada, A. R., Campbell, C., and Moores, J.: Thermal Forcing
of the Nocturnal Near Surface Environment by Martian Water Ice Clouds,
J. Geophys. Res.-Planet., 126, e2020JE006737,
https://doi.org/10.1029/2020je006737, 2021. a
Drummond, B., Mayne, N. J., Baraffe, I., Tremblin, P., Manners, J., Amundsen,
D. S., Goyal, J., and Acreman, D.: The effect of metallicity on the
atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium
chemistry, and radiative transfer, Astron. Astrophys., 612, A105,
https://doi.org/10.1051/0004-6361/201732010, 2018. a, b
Eager-Nash, J. K., Reichelt, D. J., Mayne, N. J., Hugo Lambert, F., Sergeev,
D. E., Ridgway, R. J., Manners, J., Boutle, I. A., Lenton, T. M., and Kohary,
K.: Implications of different stellar spectra for the climate of tidally
locked Earth-like exoplanets, Astron. Astrophys., 639, A99,
https://doi.org/10.1051/0004-6361/202038089, 2020. a, b
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code. I:
Choosing a configuration for a large-scale model, Q. J.
Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1256/smsqj.53106, 1996. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Fauchez, T. J., Villanueva, G. L., Sergeev, D. E., Turbet, M., Boutle, I. A.,
Tsigaridis, K., Way, M. J., Wolf, E. T., Domagal-Goldman, S. D., Forget, F.,
Haqq-Misra, J., Kopparapu, R. K., Manners, J., and Mayne, N. J.: The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). III. Simulated Observables – the Return of the Spectrum, Planetary Science Journal, 3, 213,
https://doi.org/10.3847/PSJ/ac6cf1, 2022. a, b
Fischer, E., Martínez, G. M., Rennó, N. O., Tamppari, L. K., and
Zent, A. P.: Relative Humidity on Mars: New Results From the Phoenix TECP
Sensor, J. Geophys. Res.-Planet., 124, 2780–2792,
https://doi.org/10.1029/2019JE006080, 2019. a
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M.,
Lewis, S. R., Read, P. L., and Huot, J. P.: Improved general circulation
models of the Martian atmosphere from the surface to above 80 km, J.
Geophys. Res.-Planet., 104, 24155–24175,
https://doi.org/10.1029/1999JE001025, 1999. a, b, c, d, e, f, g, h, i, j, k, l
Gary-Bicas, C. E., Hayne, P. O., Horvath, T., Heavens, N. G., Kass, D. M.,
Kleinböhl, A., Piqueux, S., Shirley, J. H., Schofield, J. T., and
McCleese, D. J.: Asymmetries in Snowfall, Emissivity, and Albedo of Mars'
Seasonal Polar Caps: Mars Climate Sounder Observations, J.
Geophys. Res.-Planet., 125, e2019JE006150, https://doi.org/10.1029/2019JE006150, 2020. a
Gebhardt, C., Abuelgasim, A., Fonseca, R. M., Martín-Torres, J., and
Zorzano, M. P.: Fully Interactive and Refined Resolution Simulations of the
Martian Dust Cycle by the MarsWRF Model, J. Geophys. Res.-Planet., 125, e2019JE006253, https://doi.org/10.1029/2019JE006253, 2020. a
Gierasch, P. J. and Toon, O. B.: Atmospheric Pressure Variation and the
Climate of Mars, J. Atmos. Sci., 30, 1502–1508,
https://doi.org/10.1175/1520-0469(1973)030<1502:APVATC>2.0.CO;2, 1973. a
González-Galindo, F., Bougher, S. W., López-Valverde, M. A.,
Forget, F., and Murphy, J.: Thermal and wind structure of the Martian
thermosphere as given by two General Circulation Models, Planet. Space
Sci., 58, 1832–1849, https://doi.org/10.1016/j.pss.2010.08.013, 2010. a
González-Galindo, F., López-Valverde, M. A., Forget, F.,
García-Comas, M., Millour, E., and Montabone, L.: Variability of the
Martian thermosphere during eight Martian years as simulated by a
ground-to-exosphere global circulation model, J. Geophys.
Res.-Planet., 120, 2020–2035, https://doi.org/10.1002/2015JE004925, 2015. a, b
Gronoff, G., Arras, P., Baraka, S., Bell, J. M., Cessateur, G., Cohen, O.,
Curry, S. M., Drake, J. J., Elrod, M., Erwin, J., Garcia-Sage, K., Garraffo,
C., Glocer, A., Heavens, N. G., Lovato, K., Maggiolo, R., Parkinson, C. D.,
Simon Wedlund, C., Weimer, D. R., and Moore, W. B.: Atmospheric Escape
Processes and Planetary Atmospheric Evolution, J. Geophys.
Res.-Space, 125, e2019JA027639, https://doi.org/10.1029/2019JA027639, 2020. a
Haberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N. A., Grin, E. A., Zent,
A. P., and Quinn, R.: On the possibility of liquid water on present-day
Mars, J. Geophys. Res.-Planet., 106, 23317–23326,
https://doi.org/10.1029/2000JE001360, 2001. a
Haberle, R. M., Forget, F., Colaprete, A., Schaeffer, J., Boynton, W. V.,
Kelly, N. J., and Chamberlain, M. A.: The effect of ground ice on the
Martian seasonal CO2 cycle, Planet. Space Sci., 56, 251–255,
https://doi.org/10.1016/j.pss.2007.08.006, 2008. a, b
Haberle, R. M., Kahre, M. A., Hollingsworth, J. L., Montmessin, F., Wilson,
R. J., Urata, R. A., Brecht, A. S., Wolff, M. J., Kling, A. M., and
Schaeffer, J. R.: Documentation of the NASA/Ames Legacy Mars Global Climate
Model: Simulations of the present seasonal water cycle, Icarus, 333,
130–164, https://doi.org/10.1016/j.icarus.2019.03.026, 2019. a
Hayne, P. O., Paige, D. A., Schofield, J. T., Kass, D. M., Kleinbhl, A.,
Heavens, N. G., and McCleese, D. J.: Carbon dioxide snow clouds on Mars:
South polar winter observations by the Mars Climate Sounder, J.
Geophys. Res.-Planet., 117, E08014, https://doi.org/10.1029/2011JE004040,
2012. a
Heavens, N. G., Richardson, M. I., Kleinböhl, A., Kass, D. M., McCleese,
D. J., Abdou, W., Benson, J. L., Schofield, J. T., Shirley, J. H., and
Wolkenberg, P. M.: Vertical distribution of dust in the Martian atmosphere
during northern spring and summer: High-altitude tropical dust maximum at
northern summer solstice, J. Geophys. Res.-Planet., 116,
E01007, https://doi.org/10.1029/2010JE003692, 2011. a
Hébrard, E., Listowski, C., Coll, P., Marticorena, B., Bergametti, G.,
Määttänen, A., Montmessin, F., and Forget, F.: An
aerodynamic roughness length map derived from extended Martian rock abundance
data, J. Geophys. Res.-Planet., 117, E04008,
https://doi.org/10.1029/2011JE003942, 2012. a, b, c
Hinson, D. P. and Wilson, R. J.: Temperature inversions, thermal tides, and
water ice clouds in the Martian tropics, J. Geophys. Res.-Planet., 109, E01002, https://doi.org/10.1029/2003je002129, 2004. a
Hinson, D. P., Asmar, S. W., Kahan, D. S., Akopian, V., Haberle, R. M., Spiga,
A., Schofield, J. T., Kleinböhl, A., Abdou, W. A., Lewis, S. R., Paik,
M., and Maalouf, S. G.: Initial results from radio occultation measurements
with the Mars Reconnaissance Orbiter: A nocturnal mixed layer in the tropics
and comparisons with polar profiles from the Mars Climate Sounder, Icarus,
243, 91–103, https://doi.org/10.1016/j.icarus.2014.09.019, 2014. a
Holmes, J. A., Lewis, S. R., Patel, M. R., and Lefèvre, F.: A reanalysis
of ozone on Mars from assimilation of SPICAM observations, Icarus, 302,
308–318, https://doi.org/10.1016/j.icarus.2017.11.026, 2018. a
Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P.: Evolution of the
Martian water cycle, Adv. Space Res., 19, 1233–1236,
https://doi.org/10.1016/S0273-1177(97)00274-3, 1997. a
Hourdin, F., Le Van, P., Forget, F., and Talagrand, O.: Meteorological
variability and the annual surface pressure cycle on Mars, J.
Atmos. Sci., 50, 3625–3640,
https://doi.org/10.1175/1520-0469(1993)050<3625:MVATAS>2.0.CO;2, 1993. a
Hourdin, F., Forget, F., and Talagrand, O.: The sensitivity of the Martian
surface pressure and atmospheric mass budget to various parameters: A
comparison between numerical simulations and Viking observations, J.
Geophys. Res., 100, 5501–5523, https://doi.org/10.1029/94je03079, 1995. a
Husain, S. Z., Girard, C., Qaddouri, A., and Plante, A.: A new dynamical core
of the Global Environmental Multiscale (GEM) model with a height-based
terrain-following vertical coordinate, Mon. Weather Rev., 147,
2555–2578, https://doi.org/10.1175/MWR-D-18-0438.1, 2019. a
Jakosky, B. M. and Edwards, C. S.: Inventory of CO2 available for terraforming
Mars, Nature Astronomy, 2, 634–639, https://doi.org/10.1038/s41550-018-0529-6, 2018. a
Kahre, M. A. and Haberle, R. M.: Mars CO2 cycle: Effects of airborne dust and
polar cap ice emissivity, Icarus, 207, 648–653,
https://doi.org/10.1016/j.icarus.2009.12.016, 2010. a, b, c
Kahre, M. A., Murphy, J. R., and Haberle, R. M.: Modelling the Martian dust
cycle and surface dust reservoirs with the NASA Ames general circulation
model, J. Geophys. Res.-Planet., 111, E06008,
https://doi.org/10.1029/2005JE002588, 2006. a
Kahre, M. A., Murphy, J. R., Newman, C. E., Wilson, R. J., Cantor, B. A.,
Lemmon, M. T., and Wolff, M. J.: The Mars Dust Cycle, in: The Atmosphere
and Climate of Mars, chap. 10, Cambridge University Press, 295–337,
https://doi.org/10.1017/9781139060172.010, 2017. a
Kass, D. M., Schofield, J. T., Michaels, T. I., Rafkin, S. C., Richardson,
M. I., and Toigo, A. D.: Analysis of atmospheric mesoscale models for entry,
descent, and landing, J. Geophys. Res.-Planet., 108,
8090, https://doi.org/10.1029/2003je002065, 2003. a
Kass, D. M., Schofield, J. T., Kleinböhl, A., McCleese, D. J., Heavens,
N. G., Shirley, J. H., and Steele, L. J.: Mars Climate Sounder Observation
of Mars' 2018 Global Dust Storm, Geophys. Res. Lett., 47, e2019GL083931,
https://doi.org/10.1029/2019GL083931, 2020. a
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner,
E. D., and Palluconi, F. D.: Thermal and albedo mapping of Mars during the
Viking primary mission, J. Geophys. Res., 82, 4249–4291,
https://doi.org/10.1029/js082i028p04249, 1977. a, b, c, d
Lefèvre, F., Bertaux, J.-L., Clancy, R. T., Encrenaz, T., Fast, K.,
Forget, F., Lebonnois, S., Montmessin, F., and Perrier, S.: Heterogeneous
chemistry in the atmosphere of Mars, Nature, 454, 971–975,
https://doi.org/10.1038/nature07116, 2008. a
Lines, S., Manners, J., Mayne, N. J., Goyal, J., Carter, A. L., Boutle, I. A.,
Lee, G. K., Helling, C., Drummond, B., Acreman, D. M., and Sing, D. K.:
Exonephology: Transmission spectra from a 3D simulated cloudy atmosphere of
HD 209458b, Mon. Not. R. Astron. Soc., 481,
194–205, https://doi.org/10.1093/mnras/sty2275, 2018. a
Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B.: A
New Boundary Layer Mixing Scheme. Part I: Scheme Description and
Single-Column Model Tests, Mon. Weather Rev., 128, 3187–3199,
https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2, 2000. a
Lora, J. M., Tokano, T., Vatant d'Ollone, J., Lebonnois, S., and Lorenz, R. D.:
A model intercomparison of Titan's climate and low-latitude environment,
Icarus, 333, 113–126, https://doi.org/10.1016/j.icarus.2019.05.031, 2019. a
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy.
Meteor. Soc., 123, 101–127, https://doi.org/10.1002/qj.49712353704, 1997. a
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A.: The
influence of radiatively active water ice clouds on the Martian climate,
Geophys. Res. Lett., 39, L23202, https://doi.org/10.1029/2012GL053564, 2012. a
Malin, M. C., Caplinger, M. A., and Davis, S. D.: Observational evidence for
an active surface reservoir of solid carbon dioxide on Mars, Science, 294,
2146–2148, https://doi.org/10.1126/science.1066416, 2001. a
Manners, J., Vosper, S. B., and Roberts, N.: Radiative transfer over resolved
topographic features for high-resolution weather prediction, Q.
J. Roy. Meteor. Soc., 138, 720–733,
https://doi.org/10.1002/qj.956, 2012. a
Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E.,
Renno, N. O., Richardson, M. I., Fairén, A. G., Genzer, M., Guzewich,
S. D., Haberle, R. M., Harri, A. M., Kemppinen, O., Lemmon, M. T., Smith,
M. D., de la Torre-Juárez, M., and Vasavada, A. R.: The Modern
Near-Surface Martian Climate: A Review of In-situ Meteorological Data from
Viking to Curiosity, Space Sci. Rev., 212, 295–338,
https://doi.org/10.1007/s11214-017-0360-x, 2017. a, b, c, d, e, f
Mayne, N. J., Baraffe, I., Acreman, D. M., Smith, C., Wood, N., Amundsen, D. S., Thuburn, J., and Jackson, D. R.: Using the UM dynamical cores to reproduce idealised 3-D flows, Geosci. Model Dev., 7, 3059–3087, https://doi.org/10.5194/gmd-7-3059-2014, 2014. a, b
Mayne, N. J., Drummond, B., Debras, F., Jaupart, E., Manners, J., Boutle,
I. A., Baraffe, I., and Kohary, K.: The Limits of the Primitive Equations of
Dynamics for Warm, Slowly Rotating Small Neptunes and Super Earths,
Astrophys. J., 871, 56, https://doi.org/10.3847/1538-4357/aaf6e9, 2019. a
McCulloch, D., Sergeev, D., Mayne, N., Bate, M., Manners, J., Boutle, I., and
Drummond, B.: UM post-processed Mars dataset, Version 1, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6974260,
2022. a, b
Mellon, M. T., Fergason, R. L., and Putzig, N. E.: The thermal inertia of the
surface of Mars, in: The Martian Surface, Cambridge University
Press, 399–427, https://doi.org/10.1017/CBO9780511536076.019, 2008. a, b
Millour, E., Forget, F., Spiga, A., López-Valverde, M. A., Vals, M.,
Zakharov, A. V., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J. Y.,
González-Galindo, F., Lewis, S. R., Read, P. L., Desjean, M.-C., and
Cipriani, F.: The Mars Climate Database (Version 5.3), in: Scientific
Workshop: From Mars Express to ExoMars, ESAC Madrid, Spain,
https://www.cosmos.esa.int/documents/1499429/1583871/Millour_E.pdf (last access: 16 January 2023),
2018. a, b
Montabone, L., Lewis, S. R., Read, P. L., and Withers, P.: Reconstructing the
weather on Mars at the time of the MERs and Beagle 2 landings, Geophys.
Res. Lett., 33, L19202, https://doi.org/10.1029/2006GL026565, 2006. a
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor,
B., Kass, D., Kleinböhl, A., Lemmon, M. T., Smith, M. D., and Wolff,
M. J.: Eight-year climatology of dust optical depth on Mars, Icarus, 251,
65–95, https://doi.org/10.1016/j.icarus.2014.12.034, 2015. a, b, c, d
Montabone, L., Spiga, A., Kass, D. M., Kleinböhl, A., Forget, F., and
Millour, E.: Martian Year 34 Column Dust Climatology from Mars Climate
Sounder Observations: Reconstructed Maps and Model Simulations, J.
Geophys. Res.-Planet., 125, e2019JE006111, https://doi.org/10.1029/2019JE006111, 2020. a, b, c, d, e, f, g, h, i
Mulholland, D. P., Read, P. L., and Lewis, S. R.: Simulating the interannual
variability of major dust storms on Mars using variable lifting thresholds,
Icarus, 223, 344–358, https://doi.org/10.1016/j.icarus.2012.12.003, 2013. a
Navarro, T., Madeleine, J. B., Forget, F., Spiga, A., Millour, E., Montmessin,
F., and Määttänen, A.: Global climate modeling of the
Martian water cycle with improved microphysics and radiatively active water
ice clouds, J. Geophys. Res.-Planet., 119, 1479–1495,
https://doi.org/10.1002/2013JE004550, 2014. a, b, c, d, e, f, g, h
Nazari-Sharabian, M., Aghababaei, M., Karakouzian, M., and Karami, M.: Water
on Mars – A Literature Review, Galaxies, 8, 40,
https://doi.org/10.3390/galaxies8020040, 2020. a
Neakrase, L. D., Balme, M. R., Esposito, F., Kelling, T., Klose, M., Kok,
J. F., Marticorena, B., Merrison, J., Patel, M., and Wurm, G.: Particle
Lifting Processes in Dust Devils, Space Sci. Rev., 203, 347–376,
https://doi.org/10.1007/s11214-016-0296-6, 2016. a, b
Neary, L. and Daerden, F.: The GEM-Mars general circulation model for Mars:
Description and evaluation, Icarus, 300, 458–476,
https://doi.org/10.1016/j.icarus.2017.09.028, 2018. a
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F.: Modeling the Martian
dust cycle 1. Representations of dust transport processes, J.
Geophys. Res.-Planet., 107, 5123, https://doi.org/10.1029/2002je001910, 2002. a, b
Newman, C. E., de la Torre Juárez, M., Pla-García, J., Wilson,
R. J., Lewis, S. R., Neary, L., Kahre, M. A., Forget, F., Spiga, A.,
Richardson, M. I., Daerden, F., Bertrand, T., Viúdez-Moreiras, D.,
Sullivan, R., Sánchez-Lavega, A., Chide, B., and Rodriguez-Manfredi,
J. A.: Multi-model Meteorological and Aeolian Predictions for Mars 2020 and
the Jezero Crater Region, Space Sci. Rev., 217, 20,
https://doi.org/10.1007/s11214-020-00788-2, 2021. a, b
Newman, C. E., Bertrand, T., Fenton, L. K., Guzewich, S. D., Jackson, B.,
Lewis, S. R., Mischna, M. A., Montabone, L., and Wellington, D. F.: Martian
Dust, 2 edn., January, Elsevier Inc.,
https://doi.org/10.1016/b978-0-12-818234-5.00143-7, 2022. a, b
Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A.,
Fitzpatrick, B., Van Haren, R., Drost, N., and Hut, R.: Workflow Automation
for Cycling Systems, Comput. Sci. Eng., 21, 7–21,
https://doi.org/10.1109/MCSE.2019.2906593, 2019 (code available at: https://cylc.github.io/, last access: 16 January 2023). a
Paige, D. A. and Wood, S. E.: Modeling the Martian seasonal CO2 cycle 2.
Interannual variability, Icarus, 99, 15–27,
https://doi.org/10.1016/0019-1035(92)90167-6, 1992. a
Pál, B., Kereszturi, Ã., Forget, F., and Smith, M. D.: Global seasonal
variations of the near-surface relative humidity levels on present-day Mars,
Icarus, 333, 481–495, https://doi.org/10.1016/j.icarus.2019.07.007, 2019. a, b
Palluconi, F. D. and Kieffer, H. H.: Thermal inertia mapping of Mars from
60∘ S to 60∘ N, Icarus, 45, 415–426,
https://doi.org/10.1016/0019-1035(81)90044-0, 1981. a, b
Pollack, J. B., Haberle, R. M., Murphy, J. R., Schaeffer, J., and Lee, H.:
Simulations of the general circulation of the Martian atmosphere. 2.
Seasonal pressure variations, J. Geophys. Res., 98,
3149–3181, https://doi.org/10.1029/92JE02947, 1993. a
Pottier, A., Forget, F., Montmessin, F., Navarro, T., Spiga, A., Millour, E.,
Szantai, A., and Madeleine, J.-B. B.: Unraveling the martian water cycle
with high-resolution global climate simulations, Icarus, 291, 82–106,
https://doi.org/10.1016/j.icarus.2017.02.016, 2017. a, b
Richardson, M. I. and Wilson, R. J.: A topographically forced asymmetry in the
martian circulation and climate, Nature, 416, 298–301,
https://doi.org/10.1038/416298a, 2002. a, b, c
Schmidt, F., Douté, S., Schmitt, B., Vincendon, M., Bibring, J. P., and
Langevin, Y.: Albedo control of seasonal South Polar cap recession on Mars,
Icarus, 200, 374–394, https://doi.org/10.1016/j.icarus.2008.12.014, 2009. a, b
Sergeev, D. E., Lambert, F. H., Mayne, N. J., Boutle, I. A., Manners, J., and
Kohary, K.: Atmospheric Convection Plays a Key Role in the Climate of
Tidally Locked Terrestrial Exoplanets: Insights from High-resolution
Simulations, Astrophys. J., 894, 84,
https://doi.org/10.3847/1538-4357/ab8882, 2020. a, b
Sergeev, D. E., Fauchez, T. J., Turbet, M., Boutle, I. A., Tsigaridis, K., Way,
M. J., Wolf, E. T., Domagal-Goldman, S. D., Forget, F., Haqq-Misra, J.,
Kopparapu, R. K., Lambert, F. H., Manners, J., and Mayne, N. J.: The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). II. Moist Cases – The Two Waterworlds, Planetary Science Journal, 3, 212,
https://doi.org/10.3847/PSJ/ac6cf2, 2022. a, b
Shaposhnikov, D. S., Rodin, A. V., and Medvedev, A. S.: The water cycle in the
general circulation model of the martian atmosphere, Solar System Research,
50, 90–101, https://doi.org/10.1134/S0038094616020039, 2016. a, b
Shaposhnikov, D. S., Rodin, A. V., Medvedev, A. S., Fedorova, A. A., Kuroda,
T., and Hartogh, P.: Modeling the Hydrological Cycle in the Atmosphere of
Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation
Particles, J. Geophys. Res.-Planet., 123, 508–526,
https://doi.org/10.1002/2017JE005384, 2018. a, b
Singh, D., Flanner, M. G., and Millour, E.: Improvement of Mars Surface Snow
Albedo Modeling in LMD Mars GCM With SNICAR, J. Geophys.
Res.-Planet., 123, 780–791, https://doi.org/10.1002/2017JE005368, 2018. a, b
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W.,
Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettengill, G. H., Neumann,
G. A., Lemoine, F. G., Abshire, J. B., Aharonson, O., Brown, C. D., Hauck,
S. A., Ivanov, A. B., McGovern, P. J., Zwally, H. J., and Duxbury, T. C.:
The global topography of Mars and implications for surface evolution,
Science, 284, 1495–1503, https://doi.org/10.1126/science.284.5419.1495, 1999. a, b, c
Spafford, L. and MacDougall, A. H.: Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review, Geosci. Model Dev., 14, 5863–5889, https://doi.org/10.5194/gmd-14-5863-2021, 2021. a
Spiga, A. and Forget, F.: A new model to simulate the Martian mesoscale and
microscale atmospheric circulation: Validation and first results, J.
Geophys. Res.-Planet., 114, E02009, https://doi.org/10.1029/2008JE003242,
2009. a
Spiga, A., Hinson, D. P., Madeleine, J. B., Navarro, T., Millour, E., Forget,
F., and Montmessin, F.: Snow precipitation on Mars driven by cloud-induced
night-time convection, Nat. Geosci., 10, 652–657,
https://doi.org/10.1038/ngeo3008, 2017. a
Staniforth, A. and Wood, N.: The deep-atmosphere Euler equations in a
generalized vertical coordinate, Mon. Weather Rev., 131, 1931–1938,
https://doi.org/10.1175//2564.1, 2003. a
Staniforth, A. and Wood, N.: Aspects of the dynamical core of a
nonhydrostatic, deep-atmosphere, unified weather and climate-prediction
model, J. Comput. Phys., 227, 3445–3464,
https://doi.org/10.1016/j.jcp.2006.11.009, 2008. a
Steele, L. J., Balme, M. R., Lewis, S. R., and Spiga, A.: The water cycle and
regolith–atmosphere interaction at Gale crater, Mars, Icarus, 289, 56–79,
https://doi.org/10.1016/j.icarus.2017.02.010, 2017. a, b
Streeter, P. M., Lewis, S. R., Patel, M. R., Holmes, J. A., and Kass, D. M.:
Surface Warming During the 2018/Mars Year 34 Global Dust Storm, Geophys.
Res. Lett., 47, e2019GL083936, https://doi.org/10.1029/2019GL083936, 2020. a, b, c
Sullivan, C. and Kaszynski, A.: PyVista: 3D plotting and mesh analysis through
a streamlined interface for the Visualization Toolkit (VTK), Journal of Open
Source Software, 4, 1450, https://doi.org/10.21105/joss.01450, 2019. a
Tillman, J. E.: VL1/VL2-M-MET-4-DAILY-AVG-PRESSURE-V1.0, NASA [data set],
https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/viking/sol_avg_sur_press_data.html (last access: 16 January 2023),
1989. a
Turbet, M., Fauchez, T. J., Sergeev, D. E., Boutle, I. A., Tsigaridis, K., Way,
M. J., Wolf, E. T., Domagal-Goldman, S. D., Forget, F., Haqq-Misra, J.,
Kopparapu, R. K., Lambert, F. H., Manners, J., Mayne, N. J., and Sohl, L.:
The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). I. Dry Cases – The Fellowship of the GCMs, Planetary Science Journal, 3, 211,
https://doi.org/10.3847/PSJ/ac6cf0, 2022. a, b, c, d, e
Vosper, S. B.: Mountain waves and wakes generated by South Georgia:
Implications for drag parametrization, Q. J. Roy.
Meteor. Soc., 141, 2813–2827, https://doi.org/10.1002/qj.2566, 2015. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a, b, c, d, e, f, g, h
Wang, C., Forget, F., Bertrand, T., Spiga, A., Millour, E., and Navarro, T.:
Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM:
Modeling Details and Validation, J. Geophys. Res.-Planet.,
123, 982–1000, https://doi.org/10.1002/2017JE005255, 2018. a, b
Wang, H. and Richardson, M. I.: The origin, evolution, and trajectory of large
dust storms on Mars during Mars years 24–30 (1999–2011), Icarus, 251,
112–127, https://doi.org/10.1016/j.icarus.2013.10.033, 2015. a, b
Way, M. J., Aleinov, I., Amundsen, D. S., Chandler, M. A., Clune, T. L., Genio,
A. D. D., Fujii, Y., Kelley, M., Kiang, N. Y., Sohl, L., and Tsigaridis, K.:
Resolving Orbital and Climate Keys of Earth and Extraterrestrial
Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for
Simulating the Climates of Rocky Planets, Astrophys. J.
Suppl. S., 231, 12, https://doi.org/10.3847/1538-4365/aa7a06, 2017. a, b, c, d, e, f
Webster, S., Brown, A. R., Cameron, D. R., and Jones, C. P.: Improvements to
the representation of orography in the Met Office Unified Model, Q.
J. Roy. Meteor. Soc., 129, 1989–2010,
https://doi.org/10.1256/qj.02.133, 2003. a
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and
Morcrette, C. J.: PC2: A prognostic cloud fraction and condensation scheme.
I: Scheme description, Q. J. Roy. Meteor.
Soc., 134, 2093–2107, https://doi.org/10.1002/qj.333, 2008a. a
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., Morcrette,
C. J., and Bodas-Salcedo, A.: PC2: A prognostic cloud fraction and
condensation scheme. II: Climate model simulations, Q. J.
Roy. Meteor. Soc., 134, 2109–2125, https://doi.org/10.1002/qj.332,
2008b. a
Wolff, M. J., Smith, M. D., Clancy, R. T., Arvidson, R., Kahre, M., Seelos IV,
F., Murchie, S., and Savijärvi, H.: Wavelength dependence of dust
aerosol single scattering albedo as observed by the Compact Reconnaissance
Imaging Spectrometer, J. Geophys. Res.-Planet., 114,
E00D04, https://doi.org/10.1029/2009JE003350, 2009.
a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235,
2014. a, b, c, d
Woodward, S.: Modeling the atmospheric life cycle and radiative impact of
mineral dust in the Hadley Centre climate model, J. Geophys.
Res.-Atmos., 106, 18155–18166,
https://doi.org/10.1029/2000JD900795, 2001. a, b, c, d
Woodward, S., Sellar, A. A., Tang, Y., Stringer, M., Yool, A., Robertson, E., and Wiltshire, A.: The simulation of mineral dust in the United Kingdom Earth System Model UKESM1, Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, 2022. a, b
Zalucha, A. M., Alan Plumb, R., John Wilson, R., Plumb, R. A., and Wilson,
R. J.: An Analysis of the Effect of Topography on the Martian Hadley Cells,
J. Atmos. Sci., 67, 673–693,
https://doi.org/10.1175/2009JAS3130.1, 2010. a, b, c, d
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We...