Articles | Volume 16, issue 19
https://doi.org/10.5194/gmd-16-5653-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5653-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DASH: a MATLAB toolbox for paleoclimate data assimilation
Jonathan King
CORRESPONDING AUTHOR
Department of Geosciences, University of Arizona, Tucson, Arizona, USA
Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA
Jessica Tierney
Department of Geosciences, University of Arizona, Tucson, Arizona, USA
Matthew Osman
Department of Geosciences, University of Arizona, Tucson, Arizona, USA
Department of Geography, University of Cambridge, Cambridge, UK
Emily J. Judd
Department of Paleobiology, Smithsonian National Museum of
Natural History, Washington, DC, USA
Kevin J. Anchukaitis
Department of Geosciences, University of Arizona, Tucson, Arizona, USA
Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA
School of Geography, Development, and Environment, University of Arizona, Tucson, Arizona, USA
Related authors
No articles found.
Magali Verkerk, Thomas J. Aubry, Chris Smith, Peter O. Hopcroft, Michael Sigl, Jessica E. Tierney, Kevin Anchukaitis, Matthew Osman, Anja Schmidt, and Matthew Toohey
Clim. Past, 21, 1755–1778, https://doi.org/10.5194/cp-21-1755-2025, https://doi.org/10.5194/cp-21-1755-2025, 2025
Short summary
Short summary
Large volcanic eruptions can trigger global cooling, affecting human societies. Using ice-core records and simple climate model to simulate volcanic effect over the last 8500 years, we show that volcanic eruptions cool the climate by 0.12 °C on average. By comparing model results with temperature recorded by tree rings over the last 1000 years, we demonstrate that our models can predict the large-scale cooling caused by volcanic eruptions and can be used in cases of large eruptions in the future.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler
Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, https://doi.org/10.5194/cp-20-495-2024, 2024
Short summary
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Cited articles
Acevedo, W., Fallah, B., Reich, S., and Cubasch, U.: Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model, Clim. Past, 13, 545–557, https://doi.org/10.5194/cp-13-545-2017, 2017. a, b
Alley, R. B.: Palaeoclimatic insights into future climate challenges,
Philos. T. Roy. Soc. Lond. A-Math. 361, 1831–1849, 2003. a
Amrhein, D. E., Hakim, G. J., and Parsons, L. A.: Quantifying structural
uncertainty in paleoclimate data assimilation with an application to the last
millennium, Geophys. Res. Lett., 47, e2020GL090485, https://doi.org/10.1029/2020GL090485, 2020. a
Anchukaitis, K., Wilson, R., Briffa, K., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P., Linderholm, H., Myglan, V., Osborn, T., Zhang, P., Rydval, M., Schneider, L., Schurer, A., Wiles, G., and Zorita, E.: Last
millennium Northern Hemisphere summer temperatures from tree rings: Part
II, spatially resolved reconstructions, Quaternary Sci. Rev., 163,
1–22, 2017. a, b
Anchukaitis, K. J., Cook, E. R., Cook, B. I., Pearl, J., D'Arrigo, R., and
Wilson, R.: Coupled Modes of North Atlantic Ocean-Atmosphere Variability and
the Onset of the Little Ice Age, Geophys. Res. Lett., 46,
12417–12426, 2019. a
Ault, T., Deser, C., Newman, M., and Emile-Geay, J.: Characterizing decadal to
centennial variability in the equatorial Pacific during the last millennium,
Geophys. Res. Lett., 40, 3450–3456, 2013. a
Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., and Meko, D. M.:
Assessing the risk of persistent drought using climate model simulations and
paleoclimate data, J. Climate, 27, 7529–7549, 2014. a
Bradley, R. S.: Are there optimum sites for global paleo-temperature
reconstructions?, in: Climatic Variations and Forcing Mechanisms of the Last
2000 Years, edited by: P. D. Jones, R. S. B. and Jouzel, J.,
NATO ASI, Springer-Verlag, New York, vol. 41, 603–624, 1996. a
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J.,
Otto-Bliesner, B., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The connected
isotopic water cycle in the Community Earth System Model version 1, J.
Adv. Model. Earth Sy., 11, 2547–2566, 2019. a
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J.,
and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for
near-future climates, P. Natl. Acad. Sci. USA, 115,
13288–13293, 2018. a
Cane, M. A., Braconnot, P., Clement, A., Gildor, H., Joussaume, S., Kageyama,
M., Khodri, M., Paillard, D., Tett, S., and Zorita, E.: Progress in
paleoclimate modeling, J. Climate, 19, 5031–5057, 2006. a
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: how well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959, 2015. a
Chen, Z.: Bayesian filtering: From Kalman filters to particle filters,
and beyond, Statistics, 182, 1–69, 2003. a
Coats, S., Smerdon, J., Stevenson, S., Fasullo, J., Otto-Bliesner, B., and
Ault, T.: Paleoclimate constraints on the spatiotemporal character of past
and future droughts, J. Climate, 33, 9883–9903, 2020. a
Cook, B. I., Cook, E. R., Anchukaitis, K. J., Seager, R., and Miller, R. L.:
Forced and unforced variability of twentieth century North American droughts
and pluvials, Clim. Dynam., 37, 1097–1110, 2011. a
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby,
G. C., and Wright, W. E.: Asian monsoon failure and megadrought during the
last millennium, Science, 328, 486–489, 2010. a
Crowley, T. J.: Utilization of paleoclimate results to validate projections of
a future greenhouse warming, in: Developments in atmospheric science,
Elsevier, vol. 19, 35–45, https://doi.org/10.1016/B978-0-444-88351-3.50010-6, 1991. a
Dail, H. and Wunsch, C.: Dynamical reconstruction of upper-ocean conditions in
the Last Glacial Maximum Atlantic, J. Climate, 27, 807–823, 2014. a
Dee, S.: sylvia-dee/PRYSM, Github [code], https://github.com/sylvia-dee/PRYSM, last access: 2 October 2023. a
Dee, S., Noone, D., Buenning, N., Emile-Geay, J., and Zhou, Y.: SPEEDY-IER: A
fast atmospheric GCM with water isotope physics, J. Geophys.
Res.-Atmos., 120, 73–91, 2015b. a
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Clim. Dynam., 38,
527–546, 2012. a
Dubinkina, S. and Goosse, H.: An assessment of particle filtering methods and nudging for climate state reconstructions, Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013, 2013. a, b
Esper, J., Frank, D. C., Wilson, R. J., and Briffa, K. R.: Effect of scaling
and regression on reconstructed temperature amplitude for the past
millennium, Geophys. Res. Lett., 32, L07711, https://doi.org/10.1029/2004GL021236, 2005. a
Evans, M. N., Kaplan, A., and Cane, M. A.: Optimal sites for coral-based
reconstruction of global sea surface temperature, Paleoceanography, 13,
502–516, 1998. a
Evans, M. N., Kaplan, A., Cane, M. A., and Villalba, R.: Globality and
Optimality in Climate Field Reconstructions from Proxy Data, in:
Interhemispheric Climate Linkages, edited by: Markgraf, V.,
Cambridge University Press, Cambridge, UK, 53–72, https://doi.org/10.1016/B978-012472670-3/50007-0, 2001. a
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28, 2013. a
Fang, S.-W., Khodri, M., Timmreck, C., Zanchettin, D., and Jungclaus, J.:
Disentangling internal and external contributions to Atlantic multidecadal
variability over the past millennium, Geophys. Res. Lett., 48,
e2021GL095990, https://doi.org/10.1029/2021GL095990, 2021. a
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013. a
Frank, D., Esper, J., and Cook, E. R.: Adjustment for proxy number and
coherence in a large-scale temperature reconstruction, Geophys. Res.
Lett., 34, L16709, https://doi.org/10.1029/2007GL030571, 2007. a
Franke, J., Valler, V., Brönnimann, S., Neukom, R., and Jaume-Santero, F.: The importance of input data quality and quantity in climate field reconstructions – results from the assimilation of various tree-ring collections, Clim. Past, 16, 1061–1074, https://doi.org/10.5194/cp-16-1061-2020, 2020. a, b, c, d
Galmarini, S., Cannon, A. J., Ceglar, A., Christensen, O. B.,
de Noblet-Ducoudré, N., Dentener, F., Doblas-Reyes, F. J., Dosio, A.,
Gutierrez, J. M., Iturbide, M., Jury, M., Lange, S., Loukos, H., Maiorano, A., Maraun, D., McGinnis, S., Nikulin, G., Riccio, A., Sanchez, E., Solazzo, E., Toreti, A., Vrac, M., and Zampieri, M.: Adjusting climate model bias for
agricultural impact assessment: How to cut the mustard, Climate Services, 13,
65–69, 2019. a, b
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and
three dimensions, Q. J. Roy. Meteorol. Soc., 125,
723–757, 1999. a
Gebbie, G.: How much did glacial North Atlantic water shoal?, Paleoceanography,
29, 190–209, 2014. a
Gong, D. and Wang, S.: Definition of Antarctic oscillation index, Geophys.
Res. Lett., 26, 459–462, 1999. a
Goosse, H., Crespin, E., de Montety, A., Mann, M., Renssen, H., and Timmermann,
A.: Reconstructing surface temperature changes over the past 600 years using
climate model simulations with data assimilation, J. Geophys.
Res.-Atmos., 115, D09108, https://doi.org/10.1029/2009JD012737, 2010. a
Goosse, H., Crespin, E., Dubinkina, S., Loutre, M.-F., Mann, M. E., Renssen,
H., Sallaz-Damaz, Y., and Shindell, D.: The role of forcing and internal
dynamics in explaining the “Medieval Climate Anomaly”, Clim. Dyn.,
39, 2847–2866, 2012a. a
Goosse, H., Guiot, J., Mann, M. E., Dubinkina, S., and Sallaz-Damaz, Y.: The
Medieval Climate Anomaly in Europe: Comparison of the summer and
annual mean signals in two reconstructions and in simulations with data
assimilation, Global Planet. Change, 84, 35–47, 2012b. a
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M.,
Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera,
J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Shuckmann, K., and
Vose, R. S.: Changing State of the Climate System, in: Climate Change 2021:
The Physical Science Basis, Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., chap. 2, Cambridge University Press, https://doi.org/10.1017/9781009157896.004,
2021. a
Guttman, N. B.: A sensitivity analysis of the Palmer Hydrologic Drought Index,
J. Am. Water Resour. As., 27, 797–807,
1991. a
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent filtering of
background error covariance estimates in an ensemble Kalman filter, Mon.
Weather Rev., 129, 2776–2790, 2001. a
Hansen, J., Sato, M., Russell, G., and Kharecha, P.: Climate sensitivity, sea
level and atmospheric carbon dioxide, Philos. T. Roy.
Soc. A, 371, 20120294, https://doi.org/10.1098/rsta.2012.0294,
2013. a
Hargreaves, J. C. and Annan, J. D.: On the importance of paleoclimate modelling for improving predictions of future climate change, Clim. Past, 5, 803–814, https://doi.org/10.5194/cp-5-803-2009, 2009. a
Hargreaves, J. C., Abe-Ouchi, A., and Annan, J. D.: Linking glacial and future climates through an ensemble of GCM simulations, Clim. Past, 3, 77–87, https://doi.org/10.5194/cp-3-77-2007, 2007. a
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate
sensitivity constrained by temperature reconstructions over the past seven
centuries, Nature, 440, 1029–1032, 2006. a
Kalman, R. E.: A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35–45, https://doi.org/10.1115/1.3662552,
1960. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) large ensemble project: A community
resource for studying climate change in the presence of internal climate
variability, B. Am. Meteorol. Soc., 96, 1333–1349,
2015. a
King, J.: JonKing93/DASH: DASH v4.2.2 (v4.2.2), Zenodo [code], https://doi.org/10.5281/zenodo.8277408, 2023. a
King, J. and Meko, D.: JonKing93/pdsi, Github [code], https://github.com/JonKing93/pdsi, last access: 2 October 2023. a
King, J., Tierney, J., Osman, M., Judd, E., and Anchukaitis, K.: DASH: A
MATLAB toolbox for paleoclimate data assimilation, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7545722, 2023b. a
King, J. M., Anchukaitis, K. J., Tierney, J. E., Hakim, G. J., Emile-Geay, J.,
Zhu, F., and Wilson, R.: A data assimilation approach to last millennium
temperature field reconstruction using a limited high-sensitivity proxy
network, J. Climate, 34, 7091–7111, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Kurahashi-Nakamura, T., Losch, M., and Paul, A.: Can sparse proxy data constrain the strength of the Atlantic meridional overturning circulation?, Geosci. Model Dev., 7, 419–432, https://doi.org/10.5194/gmd-7-419-2014, 2014. a
Kutzbach, J. E., He, F., Vavrus, S. J., and Ruddiman, W. F.: The dependence of
equilibrium climate sensitivity on climate state: Applications to studies of
climates colder than present, Geophys. Res. Lett., 40, 3721–3726,
2013. a
LeGrand, P. and Wunsch, C.: Constraints from paleotracer data on the North
Atlantic circulation during the last glacial maximum, Paleoceanography, 10,
1011–1045, 1995. a
Liu, H., Liu, Z., and Lu, F.: A Systematic Comparison of Particle Filter and
EnKF in Assimilating Time-Averaged Observations, J. Geophys.
Res.-Atmos., 122, 13–155, 2017. a
Mairesse, A., Goosse, H., Mathiot, P., Wanner, H., and Dubinkina, S.: Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study, Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013, 2013. a
Matsikaris, A., Widmann, M., and Jungclaus, J.: On-line and off-line data assimilation in palaeoclimatology: a case study, Clim. Past, 11, 81–93, https://doi.org/10.5194/cp-11-81-2015, 2015. a, b
Morales, M. S., Cook, E. R., Barichivich, J., Christie, D. A., Villalba, R.,
LeQuesne, C., Srur, A. M., Ferrero, M. E., González-Reyes, Á.,
Couvreux, F., Matskovsky, V., Aravena, J., Lara, A., Mundo, I., Rojas, F., Prieto, M., Smerdon, J., Bianchi, L., Masiokas, M., Urrutia-Jalabert, R., Rodriguez-Catón, M., Muñoz, A., Rojas-Badilla, M., Alvarez, C., Lopez, L., Luckman, B., Lister, D., Harris, I., Jones, P., Williams, A., Velazquez, G., Aliste, D., Aguilera-Betta, I., Marcotti, E., Flores, F., Muñoz, T., Cuq, E., and Boninsegna, J.: Six hundred years of South American tree rings reveal
an increase in severe hydroclimatic events since mid-20th century,
P. Natl. Acad. Sci. USA, 117, 16816–16823, 2020. a
Oke, P. R., Allen, J. S., Miller, R. N., Egbert, G. D., and Kosro, P. M.:
Assimilation of surface velocity data into a primitive equation coastal ocean
model, J. Geophys. Res.-Oceans, 107, 3122, https://doi.org/10.1029/2000JC000511, 2002. a, b
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability
and change since 850 CE: An ensemble approach with the Community Earth System
Model, B. Am. Meteorol. Soc., 97, 735–754, 2016. a
Overpeck, J. T., Otto-Bliesner, B. L., Miller, G. H., Muhs, D. R., Alley,
R. B., and Kiehl, J. T.: Paleoclimatic evidence for future ice-sheet
instability and rapid sea-level rise, Science, 311, 1747–1750, 2006. a
PaleoSENSE Project Members: Making
sense of palaeoclimate sensitivity, Nature, 491, 683–691, 2012. a
Parsons, L. A., Amrhein, D. E., Sanchez, S. C., Tardif, R., Brennan, M. K., and
Hakim, G. J.: Do Multi-Model Ensembles Improve Reconstruction Skill in
Paleoclimate Data Assimilation?, Earth Space Sci., 8, e2020EA001467, https://doi.org/10.1029/2020EA001467,
2021. a, b
Perkins, W. A. and Hakim, G.: Linear inverse modeling for coupled
atmosphere-ocean ensemble climate prediction, J. Adv. Model.
Earth Sy., 12, e2019MS001778, https://doi.org/10.1029/2019MS001778, 2020. a
Perkins, W. A. and Hakim, G. J.: Reconstructing paleoclimate fields using online data assimilation with a linear inverse model, Clim. Past, 13, 421–436, https://doi.org/10.5194/cp-13-421-2017, 2017. a
Perkins, W., Tardif, R., and Hakim, G.: modons/LMR, Github [code], https://github.com/modons/LMR, last access: 2 October 2023. a
Rice, J. L., Woodhouse, C. A., and Lukas, J. J.: Science and Decision Making:
Water Management and Tree-Ring Data in the Western United States,
J. Am. Water Resour. As., 45, 1248–1259, 2009. a
Rohling, E. J., Marino, G., Foster, G. L., Goodwin, P. A., Von der Heydt,
A. S., and Köhler, P.: Comparing climate sensitivity, past and present,
Annu. Rev. Mar. Sci., 10, 261–288, 2018. a
Schmidt, G. A.: Enhancing the relevance of palaeoclimate model/data comparisons
for assessments of future climate change, J. Quaternary Sci., 25,
79–87, 2010. a
Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to constrain future projections in CMIP5, Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, 2014. a
Sherwood, S., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J.,
Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C., Foster, G., Hausfather, Z., von der Heydt, A., Knutti, R., Mauritsen, T., Norris, J., Proistosescu, C., Rugenstein, M., Schmidt, G., Tokarska, K., and Zelinka, M.: An assessment of Earth's climate sensitivity using multiple lines of
evidence, Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678, 2020. a
Smerdon, J. E.: Climate models as a test bed for climate reconstruction
methods: pseudoproxy experiments, Wires Clim.
Change, 3, 63–77, 2012. a
Snyder, C. W.: The value of paleoclimate research in our changing climate,
Climatic Change, 100, 407–418, 2010. a
Steiger, N.: njsteiger/PHYDA-v1, Github [code], https://github.com/njsteiger/PHYDA-v1, last access: 2 October 2023. a
Steiger, N. J., Steig, E. J., Dee, S. G., Roe, G. H., and Hakim, G. J.: Climate
reconstruction using data assimilation of water isotope ratios from ice
cores, J. Geophys. Res.-Atmos., 122, 1545–1568, 2017. a
Steiger, N. J., Smerdon, J. E., Cook, E. R., and Cook, B. I.: A reconstruction
of global hydroclimate and dynamical variables over the Common Era,
Sci. Data, 5, 180086, https://doi.org/10.1038/sdata.2018.86, 2018. a, b, c
Stevenson, S., Otto-Bliesner, B., Brady, E., Nusbaumer, J., Tabor, C., Tomas,
R., Noone, D., and Liu, Z.: Volcanic eruption signatures in the
isotope-enabled last millennium ensemble, Paleoceanogr.
Paleoclim., 34, 1534–1552, 2019. a
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019. a, b, c, d, e, f, g, h, i, j
Tierney, J.: jesstierney/BAYMAG, Github [code], https://github.com/jesstierney/BAYMAG, last access: 2 October 2023b. a
Tierney, J.: jesstierney/BAYSPAR, Github [code], https://github.com/jesstierney/BAYSPAR, last access: 2 October 2023b. a
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N., Foster, G., Goddéris, Y., Huber, B., Ivany, L., Turner, S., Lunt, D., McElwain, J., Mills, B., Otto-Bliesner, B., Ridgwell, A., and Zhang, Y.: Past climates inform our future, Science, 370, eaay3701, https://doi.org/10.1126/science.aay370,
2020a. a, b
Tierney, J. E., Zhu, J., Li, M., Ridgwell, A., Hakim, G. J., Poulsen, C. J.,
Whiteford, R. D., Rae, J. W., and Kump, L. R.: Spatial patterns of climate
change across the Paleocene–Eocene Thermal Maximum, P.
Natl. Acad. Sci. USA, 119, e2205326119, https://doi.org/10.1073/pnas.2205326119, 2022. a, b
Tolwinski-Ward, S.: suztolwinskiward/vslite, Github [code], https://github.com/suztolwinskiward/vslite, last access: 2 Ocotober 2023. a
Valler, V., Franke, J., and Brönnimann, S.: Impact of different estimations of the background-error covariance matrix on climate reconstructions based on data assimilation, Clim. Past, 15, 1427–1441, https://doi.org/10.5194/cp-15-1427-2019, 2019. a
Van der Schrier, G., Jones, P., and Briffa, K.: The sensitivity of the PDSI to
the Thornthwaite and Penman-Monteith parameterizations for potential
evapotranspiration, J. Geophys. Res.-Atmos., 116, D03106, https://doi.org/10.1029/2010JD015001, 2011. a
Vrac, M.: Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction, Hydrol. Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, 2018. a
Wang, Q. and Robertson, D.: Multisite probabilistic forecasting of seasonal
flows for streams with zero value occurrences, Water Resour. Res., 47, W02546, https://doi.org/10.1029/2010WR009333,
2011. a
Wang, Q., Shrestha, D. L., Robertson, D., and Pokhrel, P.: A log-sinh
transformation for data normalization and variance stabilization, Water
Resour. Res., 48, W05514, https://doi.org/10.1029/2011WR010973, 2012. a, b
Wikle, C. K. and Berliner, L. M.: A Bayesian tutorial for data assimilation,
Physica D, 230, 1–16, 2007. a
Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E.,
D'arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl G., Helama, S., Klesse, S., Krusic, P., Linderholm, H., Myglan, V., Osborn, T., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and Zorita, E.: Last
millennium northern hemisphere summer temperatures from tree rings: Part I:
The long term context, Quaternary Sci. Rev., 134, 1–18, 2016. a
Winguth, A., Archer, D., Maier-Reimer, E., and Mikolajewicz, U.: Paleonutrient
data analysis of the glacial Atlantic using an adjoint ocean general
circulation model, in: Inverse Methods in Global Biogeochemical Cycles,
Wiley Online Library, 171–183, https://doi.org/10.1029/GM114, 2000. a
Zhao, T., Bennett, J. C., Wang, Q., Schepen, A., Wood, A. W., Robertson, D. E.,
and Ramos, M.-H.: How suitable is quantile mapping for postprocessing GCM
precipitation forecasts?, J. Climate, 30, 3185–3196, 2017. a
Zhu, F., Emile-Geay, J., Hakim, G. J., King, J., and Anchukaitis, K. J.:
Resolving the differences in the simulated and reconstructed temperature
response to volcanism, Geophys. Res. Lett., 47, e2019GL086908, https://doi.org/10.1029/2019GL086908,
2020. a
Zhu, F., Emile-Geay, J., Anchukaitis, K. J., Hakim, G. J., Wittenberg, A. T.,
Morales, M. S., Toohey, M., and King, J.: A re-appraisal of the ENSO response
to volcanism with paleoclimate data assimilation, Nat. Commun., 13,
1–9, 2022. a
Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas,
R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO variability at
the LGM revealed by an isotope-enabled Earth system model, Geophys.
Res. Lett., 44, 6984–6992, 2017. a
Zhu, J., Poulsen, C. J., and Otto-Bliesner, B. L.: High climate sensitivity in
CMIP6 model not supported by paleoclimate, Nat. Clim. Change, 10,
378–379, 2020. a
Zhu, J., Otto-Bliesner, B. L., Brady, E. C., Gettelman, A., Bacmeister, J. T.,
Neale, R. B., Poulsen, C. J., Shaw, J. K., McGraw, Z. S., and Kay, J. E.: LGM
paleoclimate constraints inform cloud parameterizations and equilibrium
climate sensitivity in CESM2, J. Adv. Model. Earth Sy.,
e2021MS002776, https://doi.org/10.1029/2021MS002776, 2021a. a, b
Zhu, J., Otto-Bliesner, B. L., Brady, E. C., Poulsen, C. J., Tierney, J. E.,
Lofverstrom, M., and DiNezio, P.: Assessment of equilibrium climate
sensitivity of the Community Earth System Model version 2 through simulation
of the Last Glacial Maximum, Geophys. Res. Lett., 48,
e2020GL091220, https://doi.org/10.1029/2020GL091220, 2021b. a
Short summary
Paleoclimate data assimilation is a useful method that allows researchers to combine climate models with natural archives of past climates. However, it can be difficult to implement in practice. To facilitate this method, we present DASH, a MATLAB toolbox. The toolbox provides routines that implement common steps of paleoclimate data assimilation, and it can be used to implement assimilations for a wide variety of time periods, spatial regions, data networks, and analytical algorithms.
Paleoclimate data assimilation is a useful method that allows researchers to combine climate...