Articles | Volume 16, issue 18
https://doi.org/10.5194/gmd-16-5401-2023
https://doi.org/10.5194/gmd-16-5401-2023
Development and technical paper
 | 
22 Sep 2023
Development and technical paper |  | 22 Sep 2023

Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard

Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen

Data sets

Configuration files for Barents-2.5 Ocean and Ice forecast model Johannes Röhrs https://doi.org/10.5281/zenodo.7607191

Barents-2.5km operational forecast model archive Norwegian Meteorological Institute https://thredds.met.no/thredds/fou-hi/barents_eps.html

Global Ocean - In-Situ Near-Real-Time Observations Copernicus Marine Service https://doi.org/10.48670/moi-00036

OSI SAF Sea ice concentration Norwegian Meteorological Institute https://thredds.met.no/thredds/osisaf/osisaf_seaiceconc.html

Ice charts from the Norwegian Ice Service Norwegian Meteorological Institute https://cryo.met.no/en/latest-ice-chart

High-Frequency radar radial current estimates Norwegian Meteorological Institute https://thredds.met.no/thredds/catalog/remotesensinghfradar/catalog.html

OSI SAF Global Low Resolution Sea Ice Drift, OSI-405-c EUMETSAF Data Services https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007

Model code and software

metno/metroms: Version 0.4.1 Jens Debernard, Nils Melsom Kristensen, Sebastian Maartensson, Keguang Wang, Kate Hedstrom, Jostein Brændshøi, and Nicholas Szapiro https://doi.org/10.5281/zenodo.5067164

EcFlow scheduling software ECMWF https://github.com/ecmwf/ecflow

EnKF-C v.2.9.9 data assimilation framework GitHub Pavel Sakov https://github.com/sakov/EnKF-C.git

Download
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.