Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5251-2023
https://doi.org/10.5194/gmd-16-5251-2023
Model description paper
 | 
13 Sep 2023
Model description paper |  | 13 Sep 2023

Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0

Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim

Related authors

Physical and chemical constraints on transformation and mass-increase of fine aerosols in northeast Asia
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247,https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
The role of HONO in O3 formation and insight into its formation mechanism during the KORUS-AQ Campaign
Junsu Gil, Jeonghwan Kim, Meehye Lee, Gangwoong Lee, Dongsoo Lee, Jinsang Jung, Joonyeong An, Jinkyu Hong, Seogju Cho, Jeonghoon Lee, and Russell Long
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1012,https://doi.org/10.5194/acp-2019-1012, 2019
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Akimoto, H. and Tanimoto, H.: Review of Comprehensive Measurements of Speciated NOy and its Chemistry: Need for Quantifying the Role of Heterogeneous Processes of HNO3 and HONO, Aerosol Air Qual. Res., 21, 200395, https://doi.org/10.4209/aaqr.2020.07.0395, 2021. 
Akimoto, H., Nagashima, T., Li, J., Fu, J. S., Ji, D., Tan, J., and Wang, Z.: Comparison of surface ozone simulation among selected regional models in MICS-Asia III – effects of chemistry and vertical transport for the causes of difference, Atmos. Chem. Phys., 19, 603–615, https://doi.org/10.5194/acp-19-603-2019, 2019. 
Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P., Salawitch, R. J., Worden, H. M., Fried, A., Mikoviny, T., and Wisthaler, A.: Measured and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US, Atmos. Environ., 96, 78–87, 2014. 
Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., and Ott, E.: A Hybrid Approach to Atmospheric Modeling that Combines Machine Learning with a Physics-Based Numerical Model, J. Adv. Model. Earth Sy., 14, e2021MS002712, https://doi.org/10.1029/2021MS002712, 2021. 
Download
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.