Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5251-2023
https://doi.org/10.5194/gmd-16-5251-2023
Model description paper
 | 
13 Sep 2023
Model description paper |  | 13 Sep 2023

Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0

Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim

Related authors

Physical and chemical constraints on transformation and mass-increase of fine aerosols in northeast Asia
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247,https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
The role of HONO in O3 formation and insight into its formation mechanism during the KORUS-AQ Campaign
Junsu Gil, Jeonghwan Kim, Meehye Lee, Gangwoong Lee, Dongsoo Lee, Jinsang Jung, Joonyeong An, Jinkyu Hong, Seogju Cho, Jeonghoon Lee, and Russell Long
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1012,https://doi.org/10.5194/acp-2019-1012, 2019
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
Key factors for quantitative precipitation nowcasting using ground weather radar data based on deep learning
Daehyeon Han, Jungho Im, Yeji Shin, and Juhyun Lee
Geosci. Model Dev., 16, 5895–5914, https://doi.org/10.5194/gmd-16-5895-2023,https://doi.org/10.5194/gmd-16-5895-2023, 2023
Short summary
QES-Plume v1.0: a Lagrangian dispersion model
Fabien Margairaz, Balwinder Singh, Jeremy A. Gibbs, Loren Atwood, Eric R. Pardyjak, and Rob Stoll
Geosci. Model Dev., 16, 5729–5754, https://doi.org/10.5194/gmd-16-5729-2023,https://doi.org/10.5194/gmd-16-5729-2023, 2023
Short summary
A two-way coupled regional urban–street network air quality model system for Beijing, China
Tao Wang, Hang Liu, Jie Li, Shuai Wang, Youngseob Kim, Yele Sun, Wenyi Yang, Huiyun Du, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 16, 5585–5599, https://doi.org/10.5194/gmd-16-5585-2023,https://doi.org/10.5194/gmd-16-5585-2023, 2023
Short summary
Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavčič, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 16, 5601–5626, https://doi.org/10.5194/gmd-16-5601-2023,https://doi.org/10.5194/gmd-16-5601-2023, 2023
Short summary
Emulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023,https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary

Cited articles

Akimoto, H. and Tanimoto, H.: Review of Comprehensive Measurements of Speciated NOy and its Chemistry: Need for Quantifying the Role of Heterogeneous Processes of HNO3 and HONO, Aerosol Air Qual. Res., 21, 200395, https://doi.org/10.4209/aaqr.2020.07.0395, 2021. 
Akimoto, H., Nagashima, T., Li, J., Fu, J. S., Ji, D., Tan, J., and Wang, Z.: Comparison of surface ozone simulation among selected regional models in MICS-Asia III – effects of chemistry and vertical transport for the causes of difference, Atmos. Chem. Phys., 19, 603–615, https://doi.org/10.5194/acp-19-603-2019, 2019. 
Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P., Salawitch, R. J., Worden, H. M., Fried, A., Mikoviny, T., and Wisthaler, A.: Measured and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US, Atmos. Environ., 96, 78–87, 2014. 
Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., and Ott, E.: A Hybrid Approach to Atmospheric Modeling that Combines Machine Learning with a Physics-Based Numerical Model, J. Adv. Model. Earth Sy., 14, e2021MS002712, https://doi.org/10.1029/2021MS002712, 2021. 
Download
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.