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Abstract. Nitrous acid (HONO) plays an important role in
the formation of ozone and fine aerosols in the urban at-
mosphere. In this study, a new simulation approach is pre-
sented to calculate the HONO mixing ratios using a deep
neural technique based on measured variables. The Reactive
Nitrogen Species using a Deep Neural Network (RND) sim-
ulation is implemented in Python. The first version of RND
(RNDv1.0) is trained, validated, and tested with HONO mea-
surement data obtained in Seoul, South Korea, from 2016 to
2021. RNDv1.0 is constructed using k-fold cross validation
and evaluated with index of agreement, correlation coeffi-
cient, root mean squared error, and mean absolute error. The
results show that RNDv1.0 adequately represents the main
characteristics of the measured HONO, and it is thus pro-
posed as a supplementary model for calculating the HONO
mixing ratio in a polluted urban environment.

1 Introduction

Surface ozone (O3) pollution has worsened over continental
areas (Arnell et al., 2019; Monks et al., 2015; IPCC, 2014;
Varotsos et al., 2013). Particularly, a warmer climate is ex-
pected to increase the surface O3 concentrations and peak
levels in polluted regions depending on its precursor levels
(IPCC, 2023). As a short-lived climate pollutant (SLCP), O3
interacts with the global temperature via positive feedback
(Myhre et al., 2017; Shindell et al., 2013; Stevenson et al.,
2013). Therefore, accurate predictions of the mixing ratios

and variations in the surface O3 are essential. While opera-
tional models such as the Community Multiscale Air Quality
(CMAQ) model have been widely used for this purpose, un-
certainties still arise from poorly understood chemical mech-
anisms involving reactive nitrogen oxides (NOy) and volatile
organic compounds (VOCs), as well as the lack of their mea-
surements (Cheng et al., 2022; Akimoto et al., 2019; Shareef
et al., 2019; Canty et al., 2015; Mallet and Sportisse, 2006)

In the urban atmosphere, NOy typically includes NOx
(NO+NO2), HONO, HNO3, organic nitrates (e.g., PAN),
NO3, N2O3, and particulate NO−3 . These species are pro-
duced and recycled through photochemical reactions until
they are removed through wet or dry deposition (Li et al.,
2020; Wang et al., 2020; Liebmann et al., 2018; Brown et al.,
2017). NOy plays an important role in critical environmental
issues concerning the Earth’s atmosphere from local air pol-
lution to global climate change (Ge et al., 2019; Sun et al.,
2011). The oxidation of NO to NO2 and finally to HNO3 is
the backbone of the chemical mechanism producing ozone
(O3) and PM2.5 (particulate matter with size ≤ 2.5 µm), and
it determines the oxidization capacity of the atmosphere. Re-
cently, as O3 has still increased even with decreasing NOx
emissions over many regions, including East Asia, interest
in the heterogeneous reaction of NOy , which is yet to be
understood, has increased (Stadtler et al., 2018; Brown et
al., 2017). Currently, the lack of measurements of individual
NOy species is hindering a comprehensive understanding of
the heterogeneous reactions (Akimoto and Tanimoto, 2021;
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Y. Chen et al., 2018; Stadtler et al., 2018; X. Wang et al.,
2017; Anderson et al., 2014).

In particular, the evidence for the heterogeneous forma-
tion of HONO in relation to high PM2.5 and O3 occurrences
in urban areas is increasing (e.g., Y. Li et al., 2021). As an
OH reservoir, HONO expedites the photochemical reactions
involving VOCs and NOx in the early morning, leading to O3
and fine aerosol formation. Nonetheless, its formation mech-
anism has not been elucidated sufficiently enough to be con-
strained in conventional photochemical models. In addition
to the reaction of NO with OH (Bloss et al., 2021), various
pathways of HONO formation have been suggested via lab-
oratory experiments, field measurements, and model simula-
tions: direct emissions from vehicles (S. Li et al., 2021) and
soil (Bao et al., 2022); photolysis of particulate nitrate (Gen
et al., 2022); and heterogeneous conversion of NO2 on var-
ious aerosol surfaces (Jia et al., 2020), the ground surface
(Meng et al., 2022), and microlayers of the sea surface (Gu
et al., 2022). Among these, the heterogeneous reaction mech-
anism on the surface is of major interest.

HONO has been mostly measured during intensive cam-
paigns in urban areas using various techniques and instru-
ments, such as a long path absorption photometer (Xue et
al., 2019; Kleffmann et al., 2006), chemical ionization mass
spectrometry (Levy et al., 2014; Roberts et al., 2010), ion
chromatography (Gil et al., 2020; Xu et al., 2019; Ye et al.,
2016; Vandenboer et al., 2014), a monitor for aerosols and
gases in ambient air (MARGA) (Xu et al., 2019), and quan-
tum cascade and tunable infrared laser differential absorp-
tion spectrometry (QC-TILDAS) (Gil et al., 2021; Lee et al.,
2011). Among these methods, QC-TILDAS has served as a
reference for the intercomparison of measurement data ob-
tained using different techniques due to its high time res-
olution and stability (Pinto et al., 2014). Previous studies
have reported that the maximum HONO with levels of sev-
eral parts per billion (ppb) has been observed at nighttime. In
comparison, the WRF-Chem and RACM2 models captured
approximately 67 %–90 % of the observed HONO in megac-
ities such as Beijing (Liu et al., 2019; Tie et al., 2013).

In recent years, machine learning (ML) methods have been
employed in the atmospheric science field for pattern clas-
sification (e.g., new particle formation event), forecasting,
and spatiotemporal modeling of O3 and PM2.5 (Arcomano
et al., 2021; Cui and Wang, 2021; Kang et al., 2021; Krish-
namurthy et al., 2021; Shahriar et al., 2020; G. Chen et al.,
2018; Joutsensaari et al., 2018). Among the ML methods, the
neural network (NN) architecture is widely used owing to its
powerful ability to process large volumes of data. In partic-
ular, a multilayer artificial NN (ANN), referred to as a deep
NN (DNN), employs statistical methods to learn nonlinear
relationships within the data and yield optimal solutions for
a target species without prior knowledge of the underlying
physicochemical processes (Schultz et al., 2021; Reichstein
et al., 2019). DNN is more beneficial than other NN archi-
tectures, such as convolution NN or long short-term memory,

Table 1. Resources for constructing the RND model.

Version Remark

Python v3.8.3
CUDA v10.1 ∗If using GPU
CuDNN v7.6.5 ∗If using GPU
TensorFlow v2.3.0 Python library
Keras v2.4.3 Python library
Pandas v1.0.5 Python library
NumPy v1.18.5 Python library

∗ GPU signifies graphic processing unit.

because it works well for discrete spatiotemporal data. Gen-
erally, the performance of a DNN is similar to or better than
that of other ML methods for small and large datasets (Baek
and Jung, 2021; Dang et al., 2021; Sumathi and Pugalendhi,
2021).

The DNN method requires lots of data to employ it for
atmospheric chemical constituent estimation; therefore, the
size of the measurement data is a limiting factor for trace
species, such as HONO, that are not routinely measured.
In this regard, previous studies have attempted to estimate
the daily average HONO mixing ratio by employing en-
semble ML models with satellite measurements (Cui and
Wang, 2021). Furthermore, a simple NN architecture us-
ing ground measurement variables that are believed to be
deeply involved in HONO formation was used to calculate
the hourly HONO mixing ratio (Gil et al., 2021). The ac-
curacy of the hourly HONO estimated from input variables,
such as aerosol surface areas and mixed layer height, is rated
better than the daily HONO estimate.

This study aims to develop a user-friendly Reactive Ni-
trogen Species using a DNN (RNDv1.0) simulation model
that estimates the HONO mixing ratios from the real-time
measurements of criteria pollutants and meteorological vari-
ables. This study is the first to calculate the HONO mixing ra-
tios using RNDv1.0. The entire construction process is com-
prehensively described, and the performance is evaluated via
comparison with the results of simulations using a commonly
used model and observations over several years.

2 Model description

The RNDv1.0 development follows systematic steps that
are similar to a general ML model construction workflow,
including data collection, preprocessing data, building the
DNN, training and validating the model, and testing the
model performance (Fig. 1). RNDv1.0 is written in Python,
and the libraries necessary to build and operate RNDv1.0 are
listed in Table 1. The dataset used to train, test, and validate
the model can be downloaded from Gil (2021).
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Figure 1. The main processes for configuring RNDv1.0 (∗ signifies
calculated values).

2.1 Collection of measurement data for model
construction

To construct RNDv1.0, measurement data were obtained, in-
cluding HONO, reactive gases, and meteorological variables.
Note that the HONO measurement data were used for model
construction but are not required to run the RND model.
The HONO mixing ratio was measured in Seoul, South Ko-
rea, using a QC-TILDAS system during May–June 2016,
June 2018, and April–June 2019 (Gil et al., 2021), as well

as a MARGA system during May–June 2021 and October–
November 2021 (Gil et al., 2023). When testing and eval-
uating the atmospheric HONO measurement methods, QC-
TILDAS was chosen as the reference method to compare the
ambient HONO mixing ratios measured using several differ-
ent techniques owing to its advantages of having low detec-
tion limits (∼ 0.1 ppbv) and high temporal resolution (Pinto
et al., 2014). More details on measurements can be found
elsewhere (Gil et al., 2021).

HONO was measured at the Olympic Park (37.52◦ N,
127.12◦ E) during the Korea–United States Air Quality
(KORUS-AQ) study in 2016 (Kim et al., 2020; Gil et
al., 2021), at the campus of Korea University (37.59◦ N,
127.03◦ E) in 2018 and 2021 (Gil et al., 2023), and at another
site near the Korea University campus (37.59◦ N, 127.08◦ E)
in 2019 (NIER, 2020) (Fig. S1). In addition to HONO, trace
gases including O3, NO2, CO, and SO2, as well as mete-
orological variables including temperature (T ), relative hu-
midity (RH), wind speed (WS), and wind direction (WD),
were measured. Note that HONO was not significantly corre-
lated with any of these variables (Fig. S2). The measurement
statistics for the entire experimental periods are presented in
Tables 2 and S1. In brief, the 10th and 90th percentile mixing
ratios of hourly HONO, NO2, and O3 were 0.3 and 2.0 ppbv,
10.0 and 47.0 ppbv, and 8.0 and 75.0 ppbv, respectively.

2.2 Data preprocessing

The observation dataset was prepared for RNDv1.0 model
construction. As input variables, hourly measurements of
chemical and meteorological variables were used, including
the mixing ratios of O3, NO2, CO, and SO2, along with T ,
RH, WS, WD, and solar zenith angle (SZA), to estimate the
target species, HONO, as the output. The WD in degrees
was converted to a cosine value for continuity. In the last
step of data processing, hourly measurement sets were re-
moved from the input dataset if any of the nine variables
was missing. Finally, 54.2 % of all the available measurement
data (2847 data points) were used to construct and evaluate
RNDv1.0.

Since the measurements of the nine variables considered
varied over a wide range of different units, they were normal-
ized to avoid bias during the calculations. Among the widely
used normalization methods, the “min–max scaling” method
was adopted, and the input variables were normalized against
the minimum and maximum values herein (Eq. 1):

xsca =
xraw−F2 (X)

F1(X)
, (1)

where xraw is the raw data, xsca is the scaled value, and the
scale factors of F1 and F2 correspond to the maximum–
minimum and minimum values of the input variable (X), re-
spectively, which are listed in Table 2.
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Table 2. Input variables and their concentrations (10th–90th percentile of the hourly measurements), coverage, and scale factors for the
RNDv1.0 model. Measurements were conducted in Seoul during May–June in 2016 and 2019.

10th–90th percentile (unit) Coverage (%) Scale factor 1 (F1)a Scale factor 2 (F2)b

Input variables

O3 12.1–90.4 (ppbv) 95.5 204.738 0.842
NO2 11.0–48.6 (ppbv) 80.6 79.925 2.375
CO 252–743 (ppbv) 95.1 975.248 137.253
SO2 1.9–6.4 (ppbv) 95.6 12.479 0.958
Solar zenith angle 22.7–118.4 (◦) 100.0 112.317 14.195
Temperature 15.9–26.7 (◦ C) 99.4 24.240 8.610
Relative humidity 29.2–79.1 (%) 99.4 88.545 10.555
Wind speed 0.2–3.7 (m s−1) 99.4 7.581 0.005
Wind direction 45.4–287.5 (◦) 99.4 359.565 0.235

Output variables

HONO 0.3–2.0 (ppbv) 81.1 % 3.447 0.013

a Maximum–minimum. b Minimum value.

2.3 Neural network architecture and hyperparameters

The network was built using the above input variables to
calculate HONO. RNDv1.0 comprises five hidden layers
(Fig. 2), which employ an exponential linear unit (ELU) as
an activation function (Eq. 2).

ELU : φ (x)=
{
ex − 1(x < 0)
x(x ≥ 0) (2)

In a DNN, an activation function creates a nonlinear relation-
ship between an input variable and an output variable. When
constructing a DNN model, ELU offers the advantage of a
fast training process and exhibits better performance in han-
dling negative values than other activation functions (Ding et
al., 2018; T. Wang et al., 2017). Moreover, the mean squared
error and Adam optimizer were applied as the loss function
and optimization function, respectively. The learning rate,
epoch, and batch were set as 0.01, 100, and 32, respectively.

2.4 Model training and k-fold cross validation

RNDv1.0 was trained, validated, and tested with the
HONO measurements obtained during May–June 2016 and
June 2018, April–June 2019, and May–June 2021 and
October–November 2021, respectively (Fig. 3). The number
of data used for the training and validation was 1122, and
that for testing was 1725.

Using the hyperparameters specified in the previous sec-
tion, the model performance was first validated using the
k-fold cross validation (KFCV) method, which is especially
useful for small datasets (Bengio and Grandvalet, 2003). In
the KFCV method (Fig. 3), the entire data are randomly di-
vided into k subsets, of which k−1 sets are used for training
and the remaining one is used for validation. In this study, k

was set to 5. The accuracy was determined via the index of
agreement (IOA), which is expressed as follows (Eq. 3):

IOA= 1−
∑n
i=1(Oi −Pi)

2∑n
i=1(

∣∣Pi −O∣∣+ ∣∣Oi −O∣∣)2 , (3)

where Oi , Pi , O, and n are the observed value, predicted
value, average of the observed values, and number of nodes,
respectively.

As IOA varies according to the number of nodes, it
was calculated for the measured (HONOobs) and calculated
(HONOmod) mixing ratios by varying the number of nodes
from 0 to 100 in each hidden layer. The best performance
was obtained with 41 nodes, for which the average IOA was
0.89± 0.01 (Fig. 4). The high IOA value signifies that the
performance of RNDv1.0 is adequate, and it is capable of
simulating the ambient HONO mixing ratio using the rou-
tinely measured criteria pollutants and meteorological vari-
ables.

The performance of RNDv1.0 was compared with that of
other models, including CMAQv5.3.1 (Appel et al., 2021),
random forest (RF), and single-layer ANN (Gil et al., 2021),
using the 2016 measurement data. The RF model was con-
structed using the KFCV method and the same input vari-
ables as RNDv1.0 (Fig. S4). Its performance was evaluated
based on mean absolute error (MAE), root mean square de-
viation (RMSE), and Pearson correlation coefficient (r):

MAE=
∑n
i=1 |Oi −Pi |

n
, (4)

RMSE=
2

√∑n
i=1(Oi −Pi)

2

n
, (5)

r =
cov(O,P )
σOσP

, (6)
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Figure 2. Structure of the deep neural network built for RNDv1.0.

Figure 3. Training, validation, and test design to build RNDv1.0 using the measurement data. The k-fold cross validation was performed
using five randomly divided subsets of the training dataset.

https://doi.org/10.5194/gmd-16-5251-2023 Geosci. Model Dev., 16, 5251–5263, 2023
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Figure 4. Index of agreement (IOA) for k-fold cross validation. Solid circle and red line represent IOA for each validation (k = 5) and the
average of five validation sets at each node number.

Table 3. Performance of the chemical transport model
(CMAQv5.3.1) and machine learning (ML) models, includ-
ing random forest (RF), artificial neural network (ANN), and
RNDv1.0, on the measurement data from the 2016 KORUS-AQ
campaign, which were used for training.

CMAQv5.3.1 RF ANN RNDv1.0

IOA 0.44 0.99 0.86 0.9
r −0.07 0.99 0.81 0.84
MAE 0.82 0.1 0.38 0.27
RMSE 1.06 0.12 0.41 0.37

where σ and cov denote the standard deviation and covari-
ance, respectively.

All models except CMAQ simulated the measured HONO
mixing ratio fairly well (Fig. 5). CMAQ not only underesti-
mated the measured HONO but also failed to represent its di-
urnal variation (Fig. 6). The statistical information about the
performance of the four models is presented in Table 3. The
mean measured HONO mixing ratio and those calculated us-
ing CMAQ, RF, ANN, and RNDv1.0 were 0.94, 0.09, 0.95,
0.88, and 0.89 ppbv, respectively. Of the four models, RF ex-
hibited the best performance followed by RND. ANN advan-
tageously calculates HONO more accurately than RND as it
uses more input variables, but it has a lower data capture rate
(41.5 %) compared to RND (97.7 %) or RF (85.3 %).

2.5 Model test

RNDv1.0 and the RF model were tested using data obtained
in June 2018, April 2019, May–June 2021, and October–
November in 2021, which were not used for RNDv1.0 train-
ing (Fig. 3). Note that the RF model outperformed the other

Figure 5. Comparison between the measured HONO (HONOobs)
and calculated HONO (HONOmod) using CMAQv5.3.1 (blue tri-
angle), RF (purple square), ANN (orange star), and RNDv1.0 (red
circle) during the KORUS-AQ campaign (May–June 2016).

three models in the training and validation process (Fig. 5).
Although the performance of RNDv1.0 was slightly lower
than that of the RF model, simulated and measured HONO
mixing ratios were in good agreement. Interestingly, the per-
formance of the RF model was much worse than RNDv1.0
in the testing process (Fig. 7). The IOA and correlation coef-
ficient of the RF model were extremely low (0.29 and−0.02,
respectively).

Geosci. Model Dev., 16, 5251–5263, 2023 https://doi.org/10.5194/gmd-16-5251-2023
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Figure 6. Average diurnal variation in the measured HONO
(HONOobs) and calculated HONO (HONOmod) using
CMAQv5.3.1 (blue triangle), RF (purple square), ANN (or-
ange star), and RNDv1.0 (red circle) during the KORUS-AQ
campaign (May–June 2016).

The performance of RNDv1.0 was slightly lower than
that of the RF model, but it traced the HONO mixing ra-
tio well. Among the test dataset, the early winter (October–
November) data are particularly valuable for demonstrating
the applicability of RNDv1.0 because they stem from dif-
ferent weather conditions than the training dataset. For ex-
ample, HONO mixing ratios reached over 4 ppbv when the
daily average PM2.5 concentration increased to 120 µg m−3

during severe haze pollution events. Therefore, in the next
step, the performance of RNDv1.0 was compared for the two
cases by dividing the testing dataset into a group in which
all input variables fall within the range of the training dataset
and a group which does not meet this criterion. In RNDv1.0,
there was no significant difference in performance between
the two groups (Fig. S5 and Table S2). When the data in
which at least one input variable does not fall within the
range of the training dataset were excluded from the test
dataset, no significant difference was observed in the perfor-
mance of RNDv1.0 between the two that meet the same at-
mospheric conditions or do not meet the criteria (Fig. S5 and
Table S2). These extreme atmospheric conditions can worsen
the model performance. Except for these extremes, RNDv1.0
traced the variation in the HONO mixing ratio well. These re-
sults demonstrate the applicability of RNDv1.0, which is not
strictly constrained by atmospheric conditions. The influence
of the input variable is further analyzed in the next section.

2.6 Bootstrap test and feature importance

A simple bootstrapping test was conducted for both
RNDv1.0 and the RF model to evaluate the relative impor-
tance of the input variable to the HONO estimates. In this

analysis, each variable was set to zero, and MAE was calcu-
lated as an evaluation metric (Kleinert et al., 2021). Among
the nine input variables of RNDv1.0, NO2 was found to have
the greatest influence on HONO concentration, followed by
RH and T (Table 4). The highest MAE of 0.59 ppbv could be
considered the maximum uncertainty of RNDv1.0 due to the
input variable. The bootstrap test result agreed well with that
of our previous study (Gil et al., 2021), where more variables
such as aerosol surface area and mixing layer height were in-
corporated into the model, and it highlights the crucial role
of precursor gases and heterogeneous conversion in HONO
formation.

In contrast, in the RF model, O3 was the most important
variable. This is likely due to the distinct inverse relationship
between O3 and HONO in the diurnal patterns, as well as
the O3 variations over a wide range. In conjunction with the
evaluation of the test dataset presented in the previous sec-
tion, the results of the feature importance for the two models
demonstrate the ability of RNDv1.0 to simulate the HONO
mixing ratio more adequately in urban areas compared to
the RF model. Thus, it is reasonable to state that RNDv1.0
constructed using routinely measured criteria pollutants and
meteorological variables can sufficiently capture the HONO
variability in the urban atmosphere.

3 Operation and application of RNDv1.0

The RNDv1.0 package is provided as an operational model,
and the .h5 files can be opened in Python. To run RNDv1.0,
the measurement data for nine input variables are required
and need to be properly prepared, as described in Sect. 2.2.
Once the input data are ready, open RNDv1.0 with the input
data files using the code provided in the example (Fig. S3).
Then, RNDv1.0 calculates and presents the HONO results
as scaled values (xsca), which then can be converted to the
HONO mixing ratio (ppbv) via the two scale factors shown
in Table 2 (Eq. 7):

HONO(ppbv)= HONOsca×F1(HONO)+F2(HONO). (7)

The HONO calculated using Eq. (7) can be applied to an ur-
ban photochemical cycle simulation. As is already known,
the photolysis of HONO is a major source of OH radicals
in the early morning when the OH level is low, and this OH
affects daytime O3 formation through photochemical reac-
tions with VOCs and NOx , which are primarily emitted dur-
ing the morning rush hour in urban areas. Furthermore, the
OH produced from HONO promotes the photochemical oxi-
dation of SO2 and VOCs, leading to aerosol formation. How-
ever, the HONO formation mechanism is still poorly under-
stood, which hinders the accurate simulation of O3 and fine
aerosols, as well as HONO, in conventional photochemical
models.

The framework for 0-dimension atmospheric modeling
(F0AM), which utilizes the MCM v3.3.1 chemical reac-

https://doi.org/10.5194/gmd-16-5251-2023 Geosci. Model Dev., 16, 5251–5263, 2023
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Figure 7. Relationship between measured HONO (HONOobs) and modeled HONO (HONOmod) using (a) RNDv1.0 and (b) a random forest
model for the test dataset.

Table 4. Results of the bootstrap test of measurement data used to train the RF and RNDv1.0 models. The greater the MAE, the greater the
influence of the variable.

Variable RF RNDv1.0

MAE Feature importance MAE Feature importance

– 0.10 – 0.28 –
O3 0.57 1 0.29 8
NO2 0.24 4 0.59 1
CO 0.19 7 0.37 5
SO2 0.17 8 0.34 6
Solar zenith Angle (SZA) 0.25 2 0.41 4
Temperature (T ) 0.21 5 0.52 2
Relative humidity (RH) 0.25 3 0.52 2
Wind speed (WS) 0.20 6 0.34 6
Wind direction (WD) 0.13 9 0.29 8

tion mechanisms (Wolfe et al., 2016), can be used to sim-
ulate the diurnal variation in O3 with the measurements of
several reactive gases (NO, NO2, CO, HCHO, VOCs, and
HONO). Detailed information about F0AM can be found
at https://sites.google.com/site/wolfegm/models (last access:
6 September 2023) and in previous studies (Gil et al., 2020;
Wolfe et al., 2016). When the F0AM model is run without
HONO, it is unable to reproduce the concentration and di-
urnal cycle of the observed O3 (Fig. 8). In comparison, the
model simulates the O3 well within 2 ppbv when HONO is
considered, which is the result of RNDv1.0. This is mainly
due to the missing OH produced by HONO photolysis in
the early morning. Its production rate is estimated to be
0.57 pptv s−1, contributing approximately 2.28 pptv to the
OH budget during 06:00–11:00 (local sun time) (Gil et al.,
2021). Given that OH is mainly produced from the photol-
ysis of O3 under high sun, the early morning supply of OH
from HONO photolysis will expedite the photochemical cy-
cle involving NOx and VOCs, promoting O3 and secondary
aerosol formation. The presence of HONO in the photochem-

ical model allows for the accurate estimation of OH radicals;
thus, the incorporation of RNDv1.0 into conventional models
will improve their overall performance.

4 Summary and implications

In this study, we developed the RND model to calculate
the mixing ratio of NOy in the urban atmosphere using a
DNN along with measurement data. The target species of
RNDv1.0 is HONO, and its mixing ratio is calculated using
criteria pollutants, including O3, NO2, CO, and SO2, as well
as meteorological variables, including T , RH, WS, WD, and
SZA. These variables are routinely measured through mon-
itoring networks. RNDv1.0 was trained and validated using
the HONO measurements data obtained in Seoul by adopting
a KFCV method and tested with other HONO datasets. The
test results demonstrate that RNDv1.0 adequately captures
the characteristic variation in HONO.

RNDv1.0 was constructed using the measurements made
in a high-NOx environment, where the maximum NO2

Geosci. Model Dev., 16, 5251–5263, 2023 https://doi.org/10.5194/gmd-16-5251-2023
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Figure 8. For June 2016, the diurnal variations in O3 (line) and OH production rate (bar) calculated using the F0AM photochemical model
with (orange) and without (blue) HONO estimated from the RNDv1.0 model. The measured and calculated O3 values are compared.

reached about 80 ppbv. During the measurement period, the
HONO mixing ratio was increased up to about 7 ppb under
the influence of air masses originating from China. When
applying RNDv1.0 to regions or times heavily affected by
transport, the model could possibly underestimate the HONO
level without more detailed information, such as nanoparti-
cles. Indeed, a previous study showed that HONO forma-
tion is closely related to the surface area of particles with
diameters in the range of hundreds of nanometers (Gil et al.,
2021). Nevertheless, RNDv1.0 is advantageously a relatively
inexpensive test for measurement quality control and loca-
tion selection, and it supports the data used for traditional
chemistry models based on the current knowledge of the ur-
ban photochemical cycle. Therefore, RNDv1.0 can serve as a
supplementary tool for conventional forecasting models. At-
tempts are currently being made to estimate ground HONO
from satellite observations (Armante et al., 2021; Theys et
al., 2020; Clarisse et al., 2011), and RNDv1.0 will be useful
for validating the satellite-derived HONO.

Code availability. The RND model codes (.h5 files)
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https://doi.org/10.5281/zenodo.5540180 (Gil, 2021).
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