Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
Simone Dietmüller
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Sigrun Matthes
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Katrin Dahlmann
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Hiroshi Yamashita
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Abolfazl Simorgh
Department of Aerospace Engineering, Universidad Carlos III de Madrid, Spain
Manuel Soler
Department of Aerospace Engineering, Universidad Carlos III de Madrid, Spain
Florian Linke
Deutsches Zentrum für Luft und Raumfahrt, Air Space Transportation Systems, Hamburg, Germany
Institute of Air Transport Systems, Hamburg University of Technology (TUHH), Hamburg, Germany
Benjamin Lührs
Deutsches Zentrum für Luft und Raumfahrt, Air Space Transportation Systems, Hamburg, Germany
Maximilian M. Meuser
Deutsches Zentrum für Luft und Raumfahrt, Air Space Transportation Systems, Hamburg, Germany
Institute of Air Transport Systems, Hamburg University of Technology (TUHH), Hamburg, Germany
Christian Weder
Deutsches Zentrum für Luft und Raumfahrt, Air Space Transportation Systems, Hamburg, Germany
Volker Grewe
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Feijia Yin
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Federica Castino
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Viewed
Total article views: 4,069 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Oct 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,675 | 1,321 | 73 | 4,069 | 340 | 85 | 52 |
- HTML: 2,675
- PDF: 1,321
- XML: 73
- Total: 4,069
- Supplement: 340
- BibTeX: 85
- EndNote: 52
Total article views: 1,657 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Aug 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,159 | 449 | 49 | 1,657 | 148 | 64 | 41 |
- HTML: 1,159
- PDF: 449
- XML: 49
- Total: 1,657
- Supplement: 148
- BibTeX: 64
- EndNote: 41
Total article views: 2,412 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Oct 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,516 | 872 | 24 | 2,412 | 192 | 21 | 11 |
- HTML: 1,516
- PDF: 872
- XML: 24
- Total: 2,412
- Supplement: 192
- BibTeX: 21
- EndNote: 11
Viewed (geographical distribution)
Total article views: 4,069 (including HTML, PDF, and XML)
Thereof 3,917 with geography defined
and 152 with unknown origin.
Total article views: 1,657 (including HTML, PDF, and XML)
Thereof 1,623 with geography defined
and 34 with unknown origin.
Total article views: 2,412 (including HTML, PDF, and XML)
Thereof 2,294 with geography defined
and 118 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
7 citations as recorded by crossref.
- Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations J. Low et al. 10.5194/amt-18-37-2025
- Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment D. Sperber & K. Gierens 10.5194/acp-23-15609-2023
- Feasibility of contrail avoidance in a commercial flight planning system: an operational analysis A. Martin Frias et al. 10.1088/2634-4505/ad310c
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- Integrating Non-CO2 climate impact considerations in air traffic management: Opportunities and challenges F. Baneshi et al. 10.1016/j.tranpol.2024.06.023
- Robust 4D climate-optimal aircraft trajectory planning under weather-induced uncertainties: Free-routing airspace A. Simorgh et al. 10.1016/j.trd.2024.104196
- Concept of robust climate-friendly flight planning under multiple climate impact estimates A. Simorgh et al. 10.1016/j.trd.2024.104215
7 citations as recorded by crossref.
- Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations J. Low et al. 10.5194/amt-18-37-2025
- Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment D. Sperber & K. Gierens 10.5194/acp-23-15609-2023
- Feasibility of contrail avoidance in a commercial flight planning system: an operational analysis A. Martin Frias et al. 10.1088/2634-4505/ad310c
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- Integrating Non-CO2 climate impact considerations in air traffic management: Opportunities and challenges F. Baneshi et al. 10.1016/j.tranpol.2024.06.023
- Robust 4D climate-optimal aircraft trajectory planning under weather-induced uncertainties: Free-routing airspace A. Simorgh et al. 10.1016/j.trd.2024.104196
- Concept of robust climate-friendly flight planning under multiple climate impact estimates A. Simorgh et al. 10.1016/j.trd.2024.104215
Latest update: 21 Jan 2025
Short summary
Climate-optimized aircraft trajectories avoid atmospheric regions with a large climate impact due to aviation emissions. This requires spatially and temporally resolved information on aviation's climate impact. We propose using algorithmic climate change functions (aCCFs) for CO2 and non-CO2 effects (ozone, methane, water vapor, contrail cirrus). Merged aCCFs combine individual aCCFs by assuming aircraft-specific parameters and climate metrics. Technically this is done with a Python library.
Climate-optimized aircraft trajectories avoid atmospheric regions with a large climate impact...