Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3723-2023
https://doi.org/10.5194/gmd-16-3723-2023
Model description paper
 | 
06 Jul 2023
Model description paper |  | 06 Jul 2023

Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0

Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann

Viewed

Total article views: 1,419 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,035 348 36 1,419 28 11
  • HTML: 1,035
  • PDF: 348
  • XML: 36
  • Total: 1,419
  • BibTeX: 28
  • EndNote: 11
Views and downloads (calculated since 15 Nov 2022)
Cumulative views and downloads (calculated since 15 Nov 2022)

Viewed (geographical distribution)

Total article views: 1,419 (including HTML, PDF, and XML) Thereof 1,403 with geography defined and 16 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Discussed (final revised paper)

Discussed (preprint)

Latest update: 21 Feb 2024
Download
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.