Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3723-2023
https://doi.org/10.5194/gmd-16-3723-2023
Model description paper
 | 
06 Jul 2023
Model description paper |  | 06 Jul 2023

Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0

Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann

Data sets

ERA5 hourly data on single levels from 1940 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut https://doi.org/10.24381/cds.adbb2d47

Model code and software

Abolfazl-Simorgh/roost: Initial Release (v0.1.0) Abolfazl Simorgh https://doi.org/10.5281/zenodo.7121862

Download
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.