Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3355-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3355-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Alena Malyarenko
CORRESPONDING AUTHOR
National Institute of Water and Atmospheric Research | Taihoro Nukurangi, 301 Evans Bay Parade, Hataitai, Te Whanganui-a-Tara / Wellington, New Zealand
Antarctic Research Centre | Te Puna Pātiotio, Victoria University of Wellington, CO 549, Cotton Building, Gate 7, Kelburn Parade, Te Whanganui-a-Tara / Wellington 6012, New Zealand
Alexandra Gossart
CORRESPONDING AUTHOR
Antarctic Research Centre | Te Puna Pātiotio, Victoria University of Wellington, CO 549, Cotton Building, Gate 7, Kelburn Parade, Te Whanganui-a-Tara / Wellington 6012, New Zealand
Scripps Institution of Oceanography, La Jolla, California, USA
Mario Krapp
GNS Science | Te Pū Ao, 30 Gracefield Rd, Gracefield, Te Awa Kairangi ki Tai / Lower Hutt 5010, New Zealand
Antarctic Research Centre | Te Puna Pātiotio, Victoria University of Wellington, CO 549, Cotton Building, Gate 7, Kelburn Parade, Te Whanganui-a-Tara / Wellington 6012, New Zealand
Related authors
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Tien-Yiao Hsu, Matthew R. Mazloff, Sarah T. Gille, Hai Lin, K. Andrew Peterson, Rui Sun, Aneesh C. Subramanian, and Luca Delle Monache
EGUsphere, https://doi.org/10.5194/egusphere-2025-4142, https://doi.org/10.5194/egusphere-2025-4142, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This paper examines air-sea coupling impacts on 15-day winter forecasts over the North Pacific and Atlantic. Using an uncoupled atmospheric model, a coupled atmosphere-ocean model, and ERA5 for validation, we find that latent heat flux bias variance is reduced by 10–20 % in the Pacific. This improves forecasts of integrated vapor transport, enhancing prediction of weather extremes in mid- to high latitudes.
Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
The Cryosphere, 19, 107–127, https://doi.org/10.5194/tc-19-107-2025, https://doi.org/10.5194/tc-19-107-2025, 2025
Short summary
Short summary
Understanding how the Ross Ice Shelf flow is changing in a warming world is important for predicting ice sheet change. Field measurements show clear intra-annual variations in ice flow; however, it is unclear what mechanisms drive this variability. We show that local perturbations in basal melt can have a significant impact on ice flow speed, but a combination of forcings is likely driving the observed variability in ice flow.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022, https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
Short summary
Understanding how the Ross Ice Shelf will evolve in a warming world is important to the future stability of Antarctica. It remains unclear what changes could drive the largest mass loss in the future and where places are most likely to trigger larger mass losses. Sensitivity maps are modelled showing that the RIS is sensitive to changes in environmental and glaciological controls at regions which are currently experiencing changes. These regions need to be monitored in a warming world.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Cited articles
Agosta, C., Fettweis, X., and Datta, R.: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance, The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015, 2015. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b
Alam, A. and Curry, J.: Lead-induced atmospheric circulations, J.
Geophys. Res.-Oceans, 100, 4643–4651,
https://doi.org/10.1029/94JC02562, 1995. a
Arduini, G., Keeley, S., Day, J., Sandu, I., Zampieri, L., and Balsamo, G.: On
the importance of representing snow over sea-ice for simulating the Arctic
boundary layer, J. Adv. Model. Earth Syst., 14, e2021MS00277,
https://doi.org/10.1029/2021MS002777, 2022. a, b
Arndt, J., Schenke, H., Jakobsson, M., Nitsche, F., Buys, G., Goleby, B.,
Rebesco, M., Bohoyo, F., Hong, J. andBlack, J., Greku, R., Udintsev, G.,
Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.: The
International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – A
new bathymetric compilation covering circum-Antarctic waters, Geophys. Res.
Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013. a
Azaneu, M., Kerr, R., and Mata, M. M.: Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis, Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, 2014. a
Banwell, A., MacAyeal, D., and Sergienko, O.: Breakup of the Larsen B Ice Shelf
triggered by chain reaction drainage of supraglacial lakes, Geophys. Res.
Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. a
Beadling, R., Russell, J., Stouffer, R., Mazloff, N., Talley, L., Goodman, P.,
Sallee, J., Hewitt, H., Hyder, P., and Pandde, A.: Representation of Southern
Ocean Properties across Coupled Model Intercomparison Project Generations:
CMIP3 to CMIP6, J. Climate, 33, 6555–6581, https://doi.org/10.1175/JCLI-D-19-0970.1,
2020. a
Bell, R., Banwell, A., Trusel, L., and Kingslake, J.: Antarctic surface
hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change, 8,
1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018. a
Bozkurt, D., Bromwich, D., Carrasco, J., and Ronadnelli, R.: Temperature and
precipitation projections for the Antarctic Peninsula over the next two
decades: contrasting global and regional climate model simulations, Clim.
Dynam., 56, 3853–3874, https://doi.org/10.1007/s00382-021-05667-2,
2021. a, b
Bromwich, D.: Snowfall in High Southern Latitudes, Rev. Geophys., 26, 149–168,
https://doi.org/10.1029/RG026i001p00149, 1988. a
Bromwich, D., Otieno, F., Hines, K., Manning, K., and Sihlo, E.: Comprehensive
evaluation of polar weather research and forecasting model performance in the
Antarctic, J. Geophys. Res.-Atmos., 118, 274–292, https://doi.org/10.1029/2012JD018139,
2013. a, b, c
Carrasco, J. and Bromwich, D.: Mesoscale Cyclogenesis Dynamics Over the
Southwestern Ross Sea, Antarctica, J. Geophys. Res., 98, 12973–12995,
https://doi.org/10.1029/92JD02821, 1993. a
Carrasco, J., Bromwich, D., and Monaghan, A.: Distribution and Characteristics
of Mesoscale Cyclones in the Antarctic: Ross Sea Eastward to the Weddell Sea,
Mon. Weather Rev., 131, 289–301,
https://doi.org/10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2, 2003. a
Christie, F., Benham, T., Batchelor, C., Rack, W., Montelli, A., and
Dowdeswell, J.: Antarctic ice-shelf advance driven by anomalous atmospheric
and sea-ice circulation, Nat. Geosci., 15, 356–362,
https://doi.org/10.1038/s41561-022-00938-x, 2022. a
DeConto, R. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016. a
Dorn, W., Rinke, A., Köberle, C., Dethloff, K., and Gerdes, R.: HIRHAM–NAOSIM 2.0: The upgraded version of the coupled regional atmosphere-ocean-sea ice model for Arctic climate studies, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2018-278, 2018. a
Dorn, W., Rinke, A., Köberle, C., Dethloff, K., and Gerdes, G.: Evaluation of
the Sea-Ice Simulation in the Upgraded Version of the COupled Regional
Atmosphere-Ocean-Sea Ice Model HIRHAM-NAOSIM 2.0, Atmosphere, 10, 431,
https://doi.org/10.3390/atmos10080431, 2019. a
Etourneau, J., Sgubin, G., Crosta, X., Swingedouw, D., Willmott, V., Barbara,
L., Houssais, M.-N., Schouten, S., Sinninghe Damsté, J., Goosse, H.,
Escutia, C., Crespin, J., Massé, G., and Kim, J.-H.: Ocean temperature
impact on ice shelf extent in the eastern Antarctic Peninsula, Nat. Commun.,
10, 304, https://doi.org/10.1038/s41467-018-08195-6, 2019. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013 (data available at: https://www.bas.ac.uk/data/our-data/maps/thematic-maps/bedmap2/, last access: October 2021). a, b
Gerber, F. and Lehning, M.: REMA topography and AntarcticaLC2000 for WRF, EnviDat [data set],
https://doi.org/10.16904/envidat.190, 2020. a
Golledge, N., Kowalewski, D., Naish, T., Levy, R., Fogwill, C., and Gasson, E.:
The multi-millennial Antarctic commitment to future sea-level rise, Nature,
526, 421–425, https://doi.org/10.1038/nature15706, 2015. a
Golledge, N., Keller, E., Gomez, N., Naughten, N., Bernales, J., Trusel, L.,
and Edwards, T.: Global environmental consequences of twenty-first century
ice-sheet melt, Nature, 566, 65–75, https://doi.org/10.1038/s41586-019-0889-9, 2019. a
Goosse, H., Kay, J., Armour, K., Bodas-Salcedo, A., Chepfer, H., Docquier, D.,
Jonko, A., Kushner, P., Lecomte, O., Massonnet, F., Park, H.-S., Pithan, F.,
Svensson, G., and Vancoppenolle, M.: Quantifying climate feedbacks in polar
regions, Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0, 2018. a
Greene, C., Gwyther, D., and Blankenship, D.: Antarctic Mapping Tools for
Matlab, Comput. Geosci., 104, 151–157, https://doi.org/10.1016/j.cageo.2016.08.003,
2017. a
Hellmer, H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a
redirected coastal current, Nature, 485, 225–228, https://doi.org/10.1038/nature11064,
2012. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R., Hólm, E., Janisková, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I.,
Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023a. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023b. a
Hill, C., DeLuca, C., Balaji, Suarez, M., and Silva, A.: The architecture of
the Earth system modeling framework, Computing in Science and Engineering, 6,
18–28, https://doi.org/10.1109/MCISE.2004.1255817, 2004. a
Hines, K. and Bromwich, D.: Development and Testing of Polar Weather Research
and Forecasting (WRF) Model, Part I: Greenland Ice Sheet Meteorology, Mon.
Weather Rev., 136, 1971–1989, https://doi.org/10.1175/2007mwr2112.1, 2008. a, b
Holland, D., Nicholls, K. W., and Basinski, A.: The Southern Ocean and its
interaction with the Antarctic Ice Sheet, Science, 367, 1326–1330,
https://doi.org/10.1126/science.aaz5491, 2020. a
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019. a
Hubbard, B., Luckman, A., Ashmore, D., Bevan, S., Kulessa, B., Kuipers-Munneke,
P., Philippe, M., Jansen, D., Booth, A., Sevestre, H., Tison, J.-L.,
O’Leary, M., and Rutt, I.: Massive subsurface ice formed by refreezing of
ice-shelf melt ponds, Nat. Commun., 7, 11897, https://doi.org/10.1038/ncomms11897, 2016. a
Hui, F., Kang, J., Liu, Y., Cheng, X., Gong, P., Wang, F., Li, Z., Ye, Y., and
Guo, Z.: AntarcticaLC2000: The new Antarctic land cover database for the year
2000, Sci. China Earth Sci., 60, 686–696, https://doi.org/10.1007/s11430-016-0029-2,
2017. a
Iacono, M., Delamere, J., Mlawer, E., Shepherd, M., Clough, S., and Collins,
W.: Radiative forcing by long-lived greenhouse gases: Calculations with the
AER radiative transfer models, J. Geophys. Res., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008. a
Janjic, Z. I.: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in
the NCEP Meso model, NCEP Office Note No. 437, 61 pp., 2002. a
Jeffries, M. O., Li, S., Jaña, R. A., Krouse, H. R., and Hurst-Cushing, B.:
Late Winter First-Year Ice Floe Thickness Variability, Seawater Flooding and
Snow Ice Formation in the Amundsen and Ross Seas, in: Antarctic Sea Ice:
Physical Processes, Interactions and Variability, edited by: Jeffries, M. O.,
American Geophysical Union (AGU), 69—87, https://doi.org/10.1029/AR074p0069,
1998. a
Jourdain, N., Mathiot, P., Gallée, H., and Barnier, B.: Influence of coupling
on atmosphere, sea ice and ocean regional models in the Ross Sector,
Antarctica, Clim. Dynam., 36, 1523–1543, https://doi.org/10.1007/s00382-010-0889-9,
2011. a
Kingslake, J., Ely, J., Das, I., and Bell, R.: Widespread movement of meltwater
onto and across Antarctic ice shelves, Nature, 544, 349–352,
https://doi.org/10.1038/nature22049, 2017. a
Kittel, C., Amory, C., Agosta, C., Delhasse, A., Doutreloup, S., Huot, P.-V., Wyard, C., Fichefet, T., and Fettweis, X.: Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR, The Cryosphere, 12, 3827–3839, https://doi.org/10.5194/tc-12-3827-2018, 2018. a, b
Krinner, G., Magand, O., Simmonds, I., Genthon, C., and Dufesne, J.-L.:
Simulated Antarctic precipitation and surface mass balance at the end of the
twentieth and twenty-first centuries, Clim. Dynam., 28, 215–230,
https://doi.org/10.1007/s00382-006-0177-x, 2007. a
Leeson, A., Forster, E., Rice, A., Gourmelen, N., and van Wessem, J.: Evolution
of supraglacial lakes on the Larsen B ice shelf in the decades before it
collapsed, Geophys. Res. Lett., 47, e2019GL085591,
https://doi.org/10.1029/2019GL085591, 2020. a
Li, S., Huang, G., Li, X., Liu, J., and Fan, G.: An Assessment of the Antarctic
Sea Ice Mass Budget Simulation in CMIP6 Historical Experiment, Front. Earth
Sci., 9, 649743, https://doi.org/10.3389/feart.2021.649743, 2021. a
Losch, M.: Modeling ice shelf cavities in a z coordinate ocean general
circulation model, J. Geophys. Res., 113, C08043, https://doi.org/10.1029/2007JC004368, 2008. a
Losch, M., Menemenlis, D., Heimbach, P., Campin, J.-M., and Hill, C.: On the
formulation of sea-ice models: Part 1: Effects of different solver
implementations and parameterizations, Ocean Modell., 33, 129–144,
https://doi.org/10.1016/j.ocemod.2009.12.008, 2010. a
Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Aðalgeirsdóttir, G.,
Mottram, R., and Simonsen, S. B.: Very high resolution regional climate model
simulations over Greenland: Identifying added value, J. Geophys. Res.-Atmos.,
117, D02108, https://doi.org/10.1029/2011JD016267, 2012. a
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D.,
Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C.,
Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato,
T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D.,
Storto, A., and Vancoppenolle, M.: NEMO ocean engine. In Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL) (v3.6-patch, Number 27), Zenodo [code], https://doi.org/10.5281/zenodo.3248739, 2017. a
Malyarenko, A. and Gossart, A.: P-SKRIPS Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.7739063, 2023a. a, b
Malyarenko, A. and Gossart, A.: PSKRIPS Version 1 – Data for January Case, Zenodo [data set], https://doi.org/10.5281/zenodo.7739059, 2023b. a, b
Mazloff, M., Heimbach, P., and Wunsch, C.: An Eddy-Permitting Southern Ocean
State Estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010 (data available at: http://sose.ucsd.edu/SO6/ITER135/, last access: March 2021). a, b
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.:
Intercomparison makes for a better climate model, Eos, 78, 445–51,
https://doi.org/10.1029/97EO00276, 1997. a
Mohrmann, M., Heuzé, C., and Swart, S.: Southern Ocean polynyas in CMIP6 models, The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021, 2021. a
Moorman, R., Morrison, A. K., and Hogg, A. M.: Thermal responses to Antarctic
ice shelf melt in an eddy rich global ocean–sea-ice model, J. Climate, 33,
6599–6620, https://doi.org/10.1175/jcli-d-19-0846.1, 2020. a
Morrison, A. K., Frölicher, T. L., and Sarmiento, J. L.: Upwelling in the
Southern Ocean, Phys. Today, 68, 27–32, https://doi.org/10.1063/PT.3.2654, 2015. a
Morrison, A. K., Hogg, A., England, M. H., and Spence, P.: Warm Circumpolar
Deep Water transport toward Antarctica driven by local dense water export in
canyons, Sci. Adv., 6, eaav2516, https://doi.org/10.1126/sciadv.aav2516, 2020. a
Nakayama, Y., Menemenlis, D., Schodlok, M., and Rignot, E.: Amundsen and
Bellingshausen Seas simulation with optimized ocean, sea ice, and
thermodynamic ice shelf model parameters, J. Geophys. Res.-Oceans, 122,
6180–6195, https://doi.org/10.1002/2016jc012538, 2017. a
Naughten, K., De Rydt, J., Rosier, S., Jenkins, A., Holland, P., and Ridley,
J.: Two-timescale response of a large Antarctic ice shelf to climate change,
Nat. Commun., 12, 1991, https://doi.org/10.1038/s41467-021-22259-0, 2021. a
Naughten, K. A., Holland, P. R., Dutrieux, P., Kimura, S., Bett, D. T., and
Jenkins, A.: Simulated Twentieth-Century Ocean Warming in the Amundsen Sea,
West Antarctica, Geophys. Res. Lett., 49, e2021GL094566,
https://doi.org/10.1029/2021gl094566, 2022. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K., Chen, F., Ek, M., Barlage, M., Kumar,
A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: he
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale measurements,
J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011. a, b
Orsi, A. H., Smethie Jr., W. M., and Bullister, J. L.: On the total input of
Antarctic waters to the deep ocean: A preliminary estimate from
chlorofluorocarbon measurements, J. Geophys. Res.-Oceans, 107, 31-1–31-14,
https://doi.org/10.1029/2001JC000976, 2002. a
Pelletier, C., Fichefet, T., Goosse, H., Haubner, K., Helsen, S., Huot, P.-V., Kittel, C., Klein, F., Le clec'h, S., van Lipzig, N. P. M., Marchi, S., Massonnet, F., Mathiot, P., Moravveji, E., Moreno-Chamarro, E., Ortega, P., Pattyn, F., Souverijns, N., Van Achter, G., Vanden Broucke, S., Vanhulle, A., Verfaillie, D., and Zipf, L.: PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5, Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, 2022. a
Ren, S., Liang, X., Sun, Q., Yu, H., Tremblay, L. B., Lin, B., Mai, X., Zhao, F., Li, M., Liu, N., Chen, Z., and Zhang, Y.: A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results, Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021, 2021. a, b
Richter, O., Gwyther, D. E., Galton-Fenzi, B. K., and Naughten, K. A.: The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation, Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, 2022. a
Rignot, E.: Accelerated ice discharge from the Antarctic Peninsula following
the collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, L18401,
https://doi.org/10.1029/2004GL020697, 2004. a
Roach, L. A., Dörr, J., Holmes, C., Massonnet, F., Blockley, E. W., Notz, D.,
Rackow, T., Raphael, M., O’Farrell, S., Bailey, D., , and Bitz, C.:
Antarctic sea ice area in CMIP6, Geophys. Res. Lett., 47, e2019GL086729,
https://doi.org/10.1029/2019GL086729, 2020. a
Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of Northern Larsen Ice
Shelf, Antarctica, Science, 271, 788–792,
https://doi.org/10.1126/science.271.5250.788, 1996. a
Scambos, T., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link between
climate wargaming and break-up of ice shelves in the Antarctic Peninsula, J.
Glaciol., 46, 516–530, https://doi.org/10.3189/172756500781833043, 2000. a, b
Shepherd, A., Wingham, D., and Rignot, E.: Warm ocean is eroding West Antarctic
Ice Sheet, Geophys. Res. Lett., 31, L23402, https://doi.org/10.1029/2004GL021106,
2004. a
Sitz, L., Di Sante, F., Farnetti, R., Fuentes-Franco, R., Coppola, E.,
Mariotti, L., Reale, M., Sannino, G., Bareiro, M., Norgherotto, R., Giuliani,
G., Graffino, G., Solidoro, C., Cossarini, G., and Giorgi, F.: Description
and evaluation of the Earth System Regional Climate Model (RegCM-ES), J. Adv. Model. Earth Sy., 9, 1863–1886,
https://doi.org/10.1002/2017MS000933, 2017. a
Skamarok, W., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wang, W.,
Powers, J., Duda, M., Barker, D., and Huang, X.-Y.: A description of the
Advanced Research WRF Version 4, Tech. Rep. NCAR TechnicalNote:
NCAR/TN-556+STR, NCAR, https://doi.org/10.5065/1dfh-6p97, 2019. a
Skinner, L., Menviel, L., Broadfield, L., Gottshalk, J., and Greaves, M.:
Southern Ocean convection amplified past Antarctic warming and atmospheric
CO2 rise during Heinrich Stadial 4., Commun. Earth Environ., 1, 23,
https://doi.org/10.1038/s43247-020-00024-3, 2020. a
Smith, R. S., Mathiot, P., Siahaan, A., Lee, V., Cornford, S. L., Gregory,
J. M., Payne, A. J., Jenkins, A., Holland, P. R., Ridley, J. K., and Jones,
C. G.: Coupling the U.K. Earth System Model to Dynamic Models of the
Greenland and Antarctic Ice Sheets, J. Adv. Model. Earth Sy., 13,
e2021MS002520, https://doi.org/10.1029/2021MS002520, 2021. a
Souverijns, N., Gossart, A., Demuzere, M., Lenaerts, J. T. M., Medley, B.,
Gorodetskaya, I. V., Vanden Broucke, S., and van Lipzig, N. P. M.: A New
Regional Climate Model for POLAR-CORDEX: Evaluation of a 30-Year Hindcast
with COSMO-CLM2 Over Antarctica, J. Geophys. Res.-Atmos., 124, 1405–1427,
https://doi.org/10.1029/2018JD028862, 2019. a
Sun, R.: SKRIPS Model v2.0b (v2.0b), Zenodo [code], https://doi.org/10.5281/zenodo.7336070, 2022. a
Sun, R., Subramanian, A. C., Miller, A. J., Mazloff, M. R., Hoteit, I., and Cornuelle, B. D.: SKRIPS v1.0: a regional coupled ocean–atmosphere modeling framework (MITgcm–WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea, Geosci. Model Dev., 12, 4221–4244, https://doi.org/10.5194/gmd-12-4221-2019, 2019. a, b
Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser, A.: Properties of
snow overlying the sea ice off East Antarctica in late winter 2007, Deep-Sea
Res. Pt. II, 58, 1137–1148,
https://doi.org/10.1016/j.dsr2.2010.12.002, 2011. a
Toyota, T., Massom, R., Lecomte, O., Nomura, D., Heil, P., Tamura, T., and
Fraser, A.: On the extraordinary snow on the sea ice off East Antarctica in
late winter, 2012, Deep-Sea Res. Pt. II, 131, 53–67,
https://doi.org/10.1016/j.dsr2.2016.02.003, 2016. a
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic
Peninsula ice shelf, Geophys. Res. Lett., 32, L12815,
https://doi.org/10.1029/2005GL023247, 2005. a
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.
a, b
Wang, H., Fyke, J. G., Lenaerts, J. T. M., Nusbaumer, J. M., Singh, H., Noone, D., Rasch, P. J., and Zhang, R.: Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model, The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, 2020. a
Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., Kavulich, M., Werner,
K., Chen, M., Lin, H.-C., Michalakes, J., Rizvi, S., Zhang, X., Berner, J.,
Munoz-Esparza, D., Reen, B., Ha, S., and Fossell, K.: WRF users' guide,
https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.1/contents.html (last access: December 2020,
2019. a
Worby, A., Jeffries, M., Weeks, W., Morris, K., and Jana, R.: The thickness
distribution of sea ice and snow cover during late winter in the
Bellingshausen and Amundsen Seas, Antarctica, J. Geophys. Res., 101,
28441–28455, https://doi.org/10.1029/96JC02737, 1996. a
Wu, X. G., Simmonds, I., and Budd, W. F.: Southern hemisphere climate system
recovery from “instantaneous” sea-ice removal, Q. J. Roy. Meteor. Soc., 122,
1501–1520, https://doi.org/10.1002/qj.49712253503, 1996. a
Yang, Z.-L. and Niu, G.-Y.: The versatile integrator of surface and atmosphere
processes (VISA) part I: Model description, Global Planet. Change, 38,
175–189, https://doi.org/10.1016/S0921-8181(03)00028-6, 2003. a
Short summary
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for...