Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3291-2023
https://doi.org/10.5194/gmd-16-3291-2023
Development and technical paper
 | 
13 Jun 2023
Development and technical paper |  | 13 Jun 2023

An improved subgrid channel model with upwind-form artificial diffusion for river hydrodynamics and floodplain inundation simulation

Youtong Rong, Paul Bates, and Jeffrey Neal

Related authors

DECIPHeR-GW v1: A coupled hydrological model with improved representation of surface-groundwater interactions
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris Wendt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-211,https://doi.org/10.5194/gmd-2024-211, 2024
Preprint under review for GMD
Short summary

Related subject area

Numerical methods
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
A subgrid method for the linear inertial equations of a compound flood model
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1839,https://doi.org/10.5194/egusphere-2024-1839, 2024
Short summary

Cited articles

Al Baky, M. A., Islam, M., and Paul, S.: Flood hazard, vulnerability and risk assessment for different land use classes using a flow model, Earth Syst. Environ., 4, 225–244, 2020. 
Alsdorf, D., Bates, P., Melack, J., Wilson, M., and Dunne, T.: Spatial and temporal complexity of the Amazon flood measured from space, Geophys. Res. Lett., 34, L08402, https://doi.org/10.1029/2007GL029447, 2007. 
Ayog, J. L., Kesserwani, G., Shaw, J., Sharifian, M. K., and Bau, D.: Second-order discontinuous Galerkin flood model: comparison with industry-standard finite volume models, J. Hydrol., 594, 125924, https://doi.org/10.1016/j.jhydrol.2020.125924, 2021. 
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 
Cook, A. and Merwade, V.: Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping, J. Hydrol., 377, 131–142, https://doi.org/10.1016/j.jhydrol.2009.08.015, 2009. 
Download
Short summary
A novel subgrid channel (SGC) model is developed for river–floodplain modelling, allowing utilization of subgrid-scale bathymetric information while performing computations on relatively coarse grids. By including adaptive artificial diffusion, potential numerical instability, which the original SGC solver had, in low-friction regions such as urban areas is addressed. Evaluation of the new SGC model through structured tests confirmed that the accuracy and stability have improved.