Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
Eric Keenan
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Jan T. M. Lenaerts
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
Brooke Medley
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Related authors
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
EGUsphere, https://doi.org/10.5194/egusphere-2024-2111, https://doi.org/10.5194/egusphere-2024-2111, 2024
Short summary
Short summary
We use 3 sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined, and that it was generated by the interaction of air with steep topography. Our results show that kilometre scale models are useful tools for exploring extreme precipitation in this region, and that more observations of rainfall are needed.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Andrew O. Hoffman, Michelle Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Chrsitianson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-114, https://doi.org/10.5194/tc-2023-114, 2023
Preprint under review for TC
Short summary
Short summary
Traditionally, glaciologists have used GNSS to measure the surface elevation, and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change of several receivers in the Amundsen Sea Embayment. From surface height change, we infer accumulation records and use these records to understand the drivers of extreme precipitation on Thwaites Glacier.
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth C. Jezek, Macro Brogioni, and Lars Kaleschke
The Cryosphere, 17, 2793–2809, https://doi.org/10.5194/tc-17-2793-2023, https://doi.org/10.5194/tc-17-2793-2023, 2023
Short summary
Short summary
The density profile of polar ice sheets is a major unknown in estimating the mass loss using lidar tomography methods. In this paper, we show that combing the active radar data and passive radiometer data can provide an estimation of density properties using the new model we implemented in this paper. The new model includes the short and long timescale variations in the firn and also the refrozen layers which are not included in the previous modeling work.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Brooke Medley, Thomas A. Neumann, H. Jay Zwally, Benjamin E. Smith, and C. Max Stevens
The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, https://doi.org/10.5194/tc-16-3971-2022, 2022
Short summary
Short summary
Satellite altimeters measure the height or volume change over Earth's ice sheets, but in order to understand how that change translates into ice mass, we must account for various processes at the surface. Specifically, snowfall events generate large, transient increases in surface height, yet snow fall has a relatively low density, which means much of that height change is composed of air. This air signal must be removed from the observed height changes before we can assess ice mass change.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Tessa Gorte, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 14, 4719–4733, https://doi.org/10.5194/tc-14-4719-2020, https://doi.org/10.5194/tc-14-4719-2020, 2020
Short summary
Short summary
In this paper, we analyze several spatial and temporal criteria to assess the ability of models in the CMIP5 and CMIP6 frameworks to recreate past Antarctic surface mass balance. We then compared a subset of the top performing models to all remaining models to refine future surface mass balance predictions under different forcing scenarios. We found that the top performing models predict lower surface mass balance by 2100, indicating less buffering than otherwise expected of sea level rise.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020, https://doi.org/10.5194/tc-14-3449-2020, 2020
Short summary
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly
The Cryosphere, 14, 3287–3308, https://doi.org/10.5194/tc-14-3287-2020, https://doi.org/10.5194/tc-14-3287-2020, 2020
Short summary
Short summary
We use repeat airborne geophysical data consisting of laser altimetry, snow, and Ku-band radar and optical imagery to analyze the spatial and temporal variability in surface roughness, slope, wind deposition, and snow accumulation at 88° S. We find small–scale variability in snow accumulation based on the snow radar subsurface layering, indicating areas of strong wind redistribution are prevalent at 88° S. There is no slope–independent relationship between surface roughness and accumulation.
Jan T. M. Lenaerts, M. Drew Camron, Christopher R. Wyburn-Powell, and Jennifer E. Kay
The Cryosphere, 14, 2253–2265, https://doi.org/10.5194/tc-14-2253-2020, https://doi.org/10.5194/tc-14-2253-2020, 2020
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020, https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Short summary
We present a reconstruction of historical (1950–2014) surface mass balance of the Greenland ice sheet using the Community Earth System Model (CESM2; ~111 km) to force a high-resolution regional climate model (RACMO2; ~11 km), which is further refined to 1 km spatial resolution. For the first time, an Earth-system-model-based product, assimilating no observations, can reconstruct realistic historical ice sheet surface mass balance as well as the mass loss acceleration that started in the 1990s.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
Short summary
Using a climate model with unique water source tagging, we found that sea-ice anomalies in the Southern Ocean and accompanying SST changes have a significant influence on Antarctic precipitation and its source attribution through their direct impact on moisture sources and indirect impact on moisture transport. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies on regional Antarctic precipitation.
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Short summary
Sea ice is an important component of the global climate system. The presence of a snow layer covering sea ice can impact ice mass and energy budgets. The detailed, physics-based, multi-layer snow model SNOWPACK was modified to simulate the snow–sea-ice system, providing simulations of the snow microstructure, water percolation and flooding, and superimposed ice formation. The model is applied to in situ measurements from snow and ice mass-balance buoys installed in the Antarctic Weddell Sea.
Raymond Sellevold, Leonardus van Kampenhout, Jan T. M. Lenaerts, Brice Noël, William H. Lipscomb, and Miren Vizcaino
The Cryosphere, 13, 3193–3208, https://doi.org/10.5194/tc-13-3193-2019, https://doi.org/10.5194/tc-13-3193-2019, 2019
Short summary
Short summary
We evaluate a downscaling method to calculate ice sheet surface mass balance with global climate models, despite their coarse resolution. We compare it with high-resolution climate modeling. Despite absence of fine-scale simulation of individual energy and mass contributors, the method provides realistic vertical SMB gradients that can be used in forcing of ice sheet models, e.g., for sea level projections. Also, the climate model simulation is improved with the method implemented interactively.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019, https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
Short summary
A new tool is evaluated in which the climate and surface mass balance (SMB) of the Greenland ice sheet are resolved at 55 and 28 km resolution, while the rest of the globe is modelled at ~110 km. The local refinement of resolution leads to improved accumulation (SMB > 0) compared to observations; however ablation (SMB < 0) is deteriorated in some regions. This is attributed to changes in cloud cover and a reduced effectiveness of a model-specific vertical downscaling technique.
Alexandra Gossart, Stephen P. Palm, Niels Souverijns, Jan T. M. Lenaerts, Irina V. Gorodetskaya, Stef Lhermitte, and Nicole P. M. van Lipzig
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, https://doi.org/10.5194/tc-2019-25, 2019
Manuscript not accepted for further review
Short summary
Short summary
Blowing snow measurements are scarce, both in time and space over the Antarctic ice sheet. We compare here CALIPSO satellite blowing snow measurements, to ground-base remote sensing ceilometer retrievals at two coastal stations in East Antarctica. Results indicate that 95 % of the blowing snow occurs under cloudy conditions, and are missed by the satellite. In addition, difficulties arise if comparing point locations to satellite overpasses.
Cécile Agosta, Charles Amory, Christoph Kittel, Anais Orsi, Vincent Favier, Hubert Gallée, Michiel R. van den Broeke, Jan T. M. Lenaerts, Jan Melchior van Wessem, Willem Jan van de Berg, and Xavier Fettweis
The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, https://doi.org/10.5194/tc-13-281-2019, 2019
Short summary
Short summary
Antarctic surface mass balance (ASMB), a component of the sea level budget, is commonly estimated through modelling as observations are scarce. The polar-oriented regional climate model MAR performs well in simulating the observed ASMB. MAR and RACMO2 share common biases we relate to drifting snow transport, with a 3 times larger magnitude than in previous estimates. Sublimation of precipitation in the katabatic layer modelled by MAR is of a magnitude similar to an observation-based estimate.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, https://doi.org/10.5194/tc-12-1479-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional atmospheric climate model RACMO2.3p2 (1979-2016) over the Antarctic ice sheet. The model successfully reproduces the present-day climate and surface mass balance (SMB) when compared with an extensive set of observations and improves on previous estimates of the Antarctic climate and SMB.
This study shows that the latest version of RACMO2 can be used for high-resolution future projections over the AIS.
Brice Noël, Willem Jan van de Berg, J. Melchior van Wessem, Erik van Meijgaard, Dirk van As, Jan T. M. Lenaerts, Stef Lhermitte, Peter Kuipers Munneke, C. J. P. Paul Smeets, Lambertus H. van Ulft, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, https://doi.org/10.5194/tc-12-811-2018, 2018
Short summary
Short summary
We present a detailed evaluation of the latest version of the regional climate model RACMO2.3p2 at 11 km resolution (1958–2016) over the Greenland ice sheet (GrIS). The model successfully reproduces the present-day climate and surface mass balance, i.e. snowfall minus meltwater run-off, of the GrIS compared to in situ observations. Since run-off from marginal narrow glaciers is poorly resolved at 11 km, further statistical downscaling to 1 km resolution is required for mass balance studies.
Alexandra Gossart, Niels Souverijns, Irina V. Gorodetskaya, Stef Lhermitte, Jan T. M. Lenaerts, Jan H. Schween, Alexander Mangold, Quentin Laffineur, and Nicole P. M. van Lipzig
The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017, https://doi.org/10.5194/tc-11-2755-2017, 2017
Short summary
Short summary
Blowing snow plays an important role on local surface mass balance of Antarctica. We present here the blowing snow detection algorithm, to retrieve blowing snow occurrence from the attenuated backscatter signal of ceilometers set up at two station. There is a good correspondence in detection of heavy blowing snow by the algorithm and the visual observations performed at Neumayer station. Moreover, most of the blowing snow occurs during events bringing precipitation from the coast inland.
Jeremy Fyke, Jan T. M. Lenaerts, and Hailong Wang
The Cryosphere, 11, 2595–2609, https://doi.org/10.5194/tc-11-2595-2017, https://doi.org/10.5194/tc-11-2595-2017, 2017
Short summary
Short summary
In this CESM modeling study, we uncover regional relationships in snowfall across Antarctica that are corroborated by regional modeling and ice core records. These relationships are driven by variability in large-scale atmospheric moisture transport and dampen overall Antarctic snowfall variability, with implications for Antarctic-sourced sea level variability and detection of an emergent anthropogenic signal in Antarctic mass trends.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017, https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Willem Jan van de Berg and Brooke Medley
The Cryosphere, 10, 459–463, https://doi.org/10.5194/tc-10-459-2016, https://doi.org/10.5194/tc-10-459-2016, 2016
Short summary
Short summary
Regional climate models improve the spatial surface mass balance (SMB) patterns in Antarctica compared to reanalyses, but they deteriorate the representation of interannual variability in SMB. Hence, we implemented additional nudging in our regional climate model RACMO2. Using annual SMB observations of the Twaites drainage basin, Antarctica, we show that this nudging vastly improves the representation of interannual variability without significant deterioration of the modelled mean SMB fields.
B. Medley, I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, H. Conway, S. Gogineni, C. Lewis, A. S. Criscitiello, J. R. McConnell, M. R. van den Broeke, J. T. M. Lenaerts, D. H. Bromwich, J. P. Nicolas, and C. Leuschen
The Cryosphere, 8, 1375–1392, https://doi.org/10.5194/tc-8-1375-2014, https://doi.org/10.5194/tc-8-1375-2014, 2014
J. T. M. Lenaerts, C. J. P. P. Smeets, K. Nishimura, M. Eijkelboom, W. Boot, M. R. van den Broeke, and W. J. van de Berg
The Cryosphere, 8, 801–814, https://doi.org/10.5194/tc-8-801-2014, https://doi.org/10.5194/tc-8-801-2014, 2014
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125–135, https://doi.org/10.5194/tc-8-125-2014, https://doi.org/10.5194/tc-8-125-2014, 2014
X. Fettweis, B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée
The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, https://doi.org/10.5194/tc-7-469-2013, 2013
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, https://doi.org/10.5194/tc-7-201-2013, 2013
Related subject area
Cryosphere
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Refactoring the elastic–viscous–plastic solver from the sea ice model CICE v6.5.1 for improved performance
A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Simulation of snow albedo and solar irradiance profile with the two-stream radiative transfer in snow (TARTES) v2.0 model
Evaluation of MITgcm-based ocean reanalysis for the Southern Ocean
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Universal differential equations for glacier ice flow modelling
A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0)
Modeling sensitivities of thermally and hydraulically driven ice stream surge cycling
A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
SnowQM 1.0: A fast R Package for bias-correcting spatial fields of snow water equivalent using quantile mapping
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
The Multiple Snow Data Assimilation System (MuSA v1.0)
The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0)
Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
SnowClim v1.0: high-resolution snow model and data for the western United States
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture
The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation
SNICAR-ADv3: a community tool for modeling spectral snow albedo
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024, https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties when representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration, enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024, https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Short summary
We describe a new snow scheme developed for use in global climate models, which simulates the interactions of snowpack with vegetation, atmosphere, and soil. We test the new snow model over a set of sites where in situ observations are available. We find that when compared to a simpler snow model, this model improves predictions of seasonal snow and of soil temperature under the snowpack, important variables for simulating both the hydrological cycle and the global climate system.
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024, https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Short summary
In this work, we introduce a newly developed Antarctic sea ice forecasting system, namely the Southern Ocean Ice Prediction System (SOIPS). The system is based on a regional sea ice‒ocean‒ice shelf coupled model and can assimilate sea ice concentration observations. By assessing the system's performance in sea ice forecasts, we find that the system can provide reliable Antarctic sea ice forecasts for the next 7 d and has the potential to guide ship navigation in the Antarctic sea ice zone.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Ghislain Picard and Quentin Libois
EGUsphere, https://doi.org/10.5194/egusphere-2024-1176, https://doi.org/10.5194/egusphere-2024-1176, 2024
Short summary
Short summary
TARTES is a radiative transfer model to compute the reflectivity in the solar domain (albedo), and the profiles of solar light and energy absorption in a multi-layered snowpack whose physical properties are prescribed by the user. It uniquely considers snow grain shape in a flexible way, allowing us to apply the most recent advances showing that snow does not behave as a collection of ice spheres, but instead as a random medium. TARTES is also simple but compares well with other complex models.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Ian Fenty, Matthew Mazloff, Köhl Armin, and Dimitris Menemenlis
EGUsphere, https://doi.org/10.5194/egusphere-2024-727, https://doi.org/10.5194/egusphere-2024-727, 2024
Short summary
Short summary
Global and basin-scale ocean reanalyses are becoming easily accessible. Yet, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluations. We conduct intercomparison analyses of Massachusetts Institute of Technology general circulation model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open ocean temporal variability and Antarctic continental shelves require improvements.
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024, https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Short summary
In this paper, we provide a novel numerical implementation for solving the energy exchanges at the surface of snow and ice. By combining the strong points of previous models, our solution leads to more accurate and robust simulations of the energy exchanges, surface temperature, and melt while preserving a reasonable computation time.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Kevin Hank, Lev Tarasov, and Elisa Mantelli
Geosci. Model Dev., 16, 5627–5652, https://doi.org/10.5194/gmd-16-5627-2023, https://doi.org/10.5194/gmd-16-5627-2023, 2023
Short summary
Short summary
Physically meaningful modeling of geophysical system instabilities is numerically challenging, given the potential effects of purely numerical artifacts. Here we explore the sensitivity of ice stream surge activation to numerical and physical model aspects. We find that surge characteristics exhibit a resolution dependency but converge at higher horizontal grid resolutions and are significantly affected by the incorporation of bed thermal and sub-glacial hydrology models.
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023, https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-298, https://doi.org/10.5194/gmd-2022-298, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better quality maps. The correction can then be extended backwards and forwards in time for periods when better quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the last 60 years at a resolution of one day and one kilometre. This is the first time that such a dataset has been produced.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023, https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Short summary
We present and validate a novel subglacial hydrology model, SUHMO, based on an adaptive mesh refinement framework. We propose the addition of a pseudo-diffusion to recover the wall melting in channels. Computational performance analysis demonstrates the efficiency of adaptive mesh refinement on large-scale hydrologic problems. The adaptive mesh refinement approach will eventually enable better ice bed boundary conditions for ice sheet simulations at a reasonable computational cost.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022, https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Adrian K. Turner, Kara J. Peterson, and Dan Bolintineanu
Geosci. Model Dev., 15, 1953–1970, https://doi.org/10.5194/gmd-15-1953-2022, https://doi.org/10.5194/gmd-15-1953-2022, 2022
Short summary
Short summary
We developed a technique to remap sea ice tracer quantities between circular discrete element distributions. This is needed for a global discrete element method sea ice model being developed jointly by Los Alamos National Laboratory and Sandia National Laboratories that has the potential to better utilize newer supercomputers with graphics processing units and better represent sea ice dynamics. This new remapping technique ameliorates the effect of element distortion created by sea ice ridging.
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022, https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022, https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
Short summary
We present an improved coupled modeling system for Arctic sea ice prediction. We perform Arctic sea ice prediction experiments with improved/updated physical parameterizations, which show better skill in predicting sea ice state as well as atmospheric and oceanic state in the Arctic compared with its predecessor. The improved model also shows extended predictive skill of Arctic sea ice after the summer season. This provides an added value of this prediction system for decision-making.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021, https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Short summary
In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo. Therefore, we have developed the VALHALLA method to optimize snow spectral albedo calculations through the determination of spectrally fixed radiative variables. The development of VALHALLA v1.0 with the use of the snow albedo model TARTES and the spectral irradiance model SBDART indicates a considerable reduction in calculation time while maintaining an adequate accuracy of albedo values.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Cited articles
Alley, R. B. and Koci, B. R.: Recent Warming in Central Greenland?,
Ann. Glaciol., 14, 6–8, https://doi.org/10.3189/S0260305500008144, 1990. a
Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard, G.,
Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal
Variations in Drag Coefficient over a Sastrugi-Covered Snowfield
in Coastal East Antarctica, Bound.-Lay. Meteorol., 164, 107–133,
https://doi.org/10.1007/s10546-017-0242-5, 2017. a
Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a, b, c, d
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss
avalanche warning Part I: numerical model, Cold Reg. Sci.
Technol., 35, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014. a, b
Bintanja, R.: Snowdrift suspension and atmospheric turbulence. Part I:
Theoretical background and model description, Bound.-Lay. Meteorol., 95,
343–368, https://doi.org/10.1023/A:1002676804487, 2000. a
Clifton, A., Rüedi, J.-D., and Lehning, M.: Snow saltation threshold
measurements in a drifting-snow wind tunnel, J. Glaciol., 52,
585–596, https://doi.org/10.3189/172756506781828430, 2006. a
Comola, F., Gaume, J., Kok, J. F., and Lehning, M.: Cohesion‐Induced
Enhancement of Aeolian Saltation, Geophys. Res. Lett., 46,
5566–5574, https://doi.org/10.1029/2019GL082195, 2019a. a
Comola, F., Giometto, M. G., Salesky, S. T., Parlange, M. B., and Lehning, M.:
Preferential Deposition of Snow and Dust Over Hills: Governing
Processes and Relevant Scales, J. Geophys. Res.-Atmos., 124, 7951–7974, https://doi.org/10.1029/2018JD029614, 2019b. a
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann.,
100, 32–74, https://doi.org/10.1007/BF01448839, 1928. a
Dattler, M. E., Lenaerts, J. T. M., and Medley, B.: Antarctic Snow Radar-Derived Relative Accumulation Product, Zenodo [data set], https://doi.org/10.5281/zenodo.3534315, 2019b. a
Forthofer, J. M., Butler, B. W., and Wagenbrenner, N. S.: A comparison of three
approaches for simulating fine-scale surface winds in support of wildland
fire management. Part I. Model formulation and comparison against
measurements, Int. J. Wildland Fire, 23, 969,
https://doi.org/10.1071/WF12089, 2014. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available at: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/, last access: 4 June 2023). a, b
Gerber, F., Lehning, M., Hoch, S. W., and Mott, R.: A close-ridge small-scale
atmospheric flow field and its influence on snow accumulation, J.
Geophys. Res.-Atmos., 122, 7737–7754,
https://doi.org/10.1002/2016JD026258, 2017. a, b
Grima, C., Blankenship, D. D., Young, D. A., and Schroeder, D. M.: Surface
slope control on firn density at Thwaites Glacier, West Antarctica:
Results from airborne radar sounding: SURFACE SLOPE CONTROL ON
FIRN DENSITY, Geophys. Res. Lett., 41, 6787–6794,
https://doi.org/10.1002/2014GL061635, 2014. a
Gromke, C., Horender, S., Walter, B., and Lehning, M.: Snow particle
characteristics in the saltation layer, J. Glaciol., 60, 431–439,
https://doi.org/10.3189/2014JoG13J079, 2014. a
Groot Zwaaftink, C. D., Cagnati, A., Crepaz, A., Fierz, C., Macelloni, G., Valt, M., and Lehning, M.: Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK, The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013, 2013. a, b
Hames, O., Jafari, M., Wagner, D. N., Raphael, I., Clemens-Sewall, D., Polashenski, C., Shupe, M. D., Schneebeli, M., and Lehning, M.: Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0., Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, 2022. a
Helbig, N.: Application of the radiosity approach to the radiation balance in
complex terrain, PhD thesis, University of Zurich, Switzerland,
https://doi.org/10.5167/UZH-30798, 2009. a
Herron, M. M. and Langway, C. C.: Firn Densification: An Empirical
Model, J. Glaciol., 25, 373–385,
https://doi.org/10.3189/S0022143000015239, 1980. a
Kausch, T., Lhermitte, S., Lenaerts, J. T. M., Wever, N., Inoue, M., Pattyn, F., Sun, S., Wauthy, S., Tison, J.-L., and van de Berg, W. J.: Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling, The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, 2020. a, b
Keenan, E.: EricKeenan/download_MERRA2: Download MERRA-2 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.4560825, 2021. a
Keenan, E.: EricKeenan/SNOWPACK_WAIS: Initial release of SNOWPACK_WAIS (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5914751, 2022a. a
Keenan, E.: EricKeenan/antarctic-windninja: Initial release of antarctic-windninja (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5914727, 2022b. a
Keenan, E., Wever, N., Dattler, M., Lenaerts, J. T. M., Medley, B., Kuipers Munneke, P., and Reijmer, C.: Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, 2021. a, b, c, d, e, f, g, h, i, j, k
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., Kampenhout, L., Kennedy, D., Kluzek, E.,
Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J.,
Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M.,
Bisht, G., Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M.,
Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M.,
Gentine, P., Hoffman, F., Keppel‐Aleks, G., Knox, R., Kumar, S., Lenaerts,
J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D.,
Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A.,
Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The
Community Land Model Version 5: Description of New Features,
Benchmarking, and Impact of Forcing Uncertainty, J. Adv.
Model. Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. a
Lehning, M. and Fierz, C.: Assessment of snow transport in avalanche terrain,
Cold Reg. Sci. Technol., 51, 240–252,
https://doi.org/10.1016/j.coldregions.2007.05.012, 2008. a, b
Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model
for the Swiss avalanche warning Part III: meteorological forcing, thin
layer formation and evaluation, Cold Reg. Sci. Technol., 35, https://doi.org/10.1016/S0165-232X(02)00072-1,
2002a. a
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical
SNOWPACK model for the Swiss avalanche warning Part II. Snow
microstructure, Cold Reg. Sci. Technol., 35, https://doi.org/10.1016/S0165-232X(02)00073-3,
2002b. a
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., and
Zappa, M.: ALPINE3D: a detailed model of mountain surface processes and its
application to snow hydrology, Hydrol. Process., 20, 2111–2128,
https://doi.org/10.1002/hyp.6204, 2006. a, b, c
Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous
precipitation distribution and snow transport in steep terrain: SNOW
DRIFT AND INHOMOGENEOUS PRECIPITATION, Water Resour. Res., 44, 006545,
https://doi.org/10.1029/2007WR006545, 2008. a
Lenaerts, J. T., Brown, J., Van Den Broeke, M. R., Matsuoka, K., Drews, R.,
Callens, D., Philippe, M., Gorodetskaya, I. V., Van Meijgaard, E., Reijmer,
C. H., Pattyn, F., and Van Lipzig, N. P.: High variability of climate and
surface mass balance induced by Antarctic ice rises, J. Glaciol.,
60, 1101–1110, https://doi.org/10.3189/2014JoG14J040, 2014. a
Lenaerts, J. T. M. and van den Broeke, M. R.: Modeling drifting snow in
Antarctica with a regional climate model: 2. Results: DRIFTING SNOW
IN ANTARCTICA, J. Geophys. Res.-Atmos., 117, 015419,
https://doi.org/10.1029/2010JD015419, 2012. a
Lenaerts, J. T. M., Medley, B., Broeke, M. R., and Wouters, B.: Observing and
Modeling Ice Sheet Surface Mass Balance, Rev. Geophys.,
57, 376–420, https://doi.org/10.1029/2018RG000622, 2019. a
Ligtenberg, S.: The present and future state of the Antarctic firn layer, PhD
thesis, Utrecht University, the Netherlands,
https://dspace.library.uu.nl/handle/1874/291634 (last access: 4 June 2023), 2014. a
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011. a
Liston, G. E. and Elder, K.: A Meteorological Distribution System for
High-Resolution Terrestrial Modeling (MicroMet), J.
Hydrometeorol., 7, 217–234, https://doi.org/10.1175/JHM486.1, 2006. a
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain,
J. Glaciol., 44, 498–516, https://doi.org/10.3189/S0022143000002021, 1998. a
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S.,
and Tabler, R. D.: Simulating complex snow distributions in windy
environments using SnowTran-3D, J. Glaciol., 53, 241–256,
https://doi.org/10.3189/172756507782202865, 2007. a, b, c, d
Mann, G. W.: Surface Heat and Water Vapour Budgets over Antarctica, PhD
thesis, University of Leeds, UK,
https://citeseerx.ist.psu.edu/doc_view/pid/2f57251ccf36be44b54367971d8c775386675020 (last access: 4 June 2023),
1998. a
Martin, P. J. and Peel, D. A.: The Spatial Distribution of 10 m
Temperatures in the Antarctic Peninsula, J. Glaciol., 20,
311–317, https://doi.org/10.3189/S0022143000013861, 1978. a
Matsuoka, K., Skoglund, A., and Roth, G.: Quantarctica, Norwegian Polar Institute Data Catalog [data set],
https://doi.org/10.21334/NPOLAR.2018.8516E961,2018. a
Medley, B., Lenaerts, J. T. M., Dattler, M., Keenan, E., and Wever, N.:
Predicting Antarctic Net Snow Accumulation at the Kilometer Scale and Its
Impact on Observed Height Changes, Geophys. Res. Lett., 49, e2022GL099330,
https://doi.org/10.1029/2022GL099330,
2022a. a
Medley, B., Neumann, T. A., Zwally, H. J., Smith, B. E., and Stevens, C. M.: Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021, The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, 2022b. a
Melo, D. B., Sharma, V., Comola, F., Sigmund, A., and Lehning, M.: Modeling
Snow Saltation: The Effect of Grain Size and Interparticle
Cohesion, J. Geophys. Res.-Atmos., 127, 035260,
https://doi.org/10.1029/2021JD035260, 2022. a
Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, 2022. a
Mott, R., Faure, F., Lehning, M., Löwe, H., Hynek, B., Michlmayer, G.,
Prokop, A., and Schöner, W.: Simulation of seasonal snow-cover distribution
for glacierized sites on Sonnblick, Austria, with the Alpine3D model,
Ann. Glaciol., 49, 155–160, https://doi.org/10.3189/172756408787814924, 2008. a
Mott, R., Schirmer, M., Bavay, M., Grünewald, T., and Lehning, M.: Understanding snow-transport processes shaping the mountain snow-cover, The Cryosphere, 4, 545–559, https://doi.org/10.5194/tc-4-545-2010, 2010. a
Nishimura, K. and Nemoto, M.: Blowing snow at Mizuho station, Antarctica,
Philos. T. Roy. Soc. A, 363, 1647–1662, https://doi.org/10.1098/rsta.2005.1599, 2005. a
Palm, S. P., Kayetha, V., Yang, Y., and Pauly, R.: Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations, The Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, 2017. a
Paterna, E., Crivelli, P., and Lehning, M.: Decoupling of mass flux and
turbulent wind fluctuations in drifting snow: Wind-Saltation Coupling
in Drifting Snow, Geophys. Res. Lett., 43, 4441–4447,
https://doi.org/10.1002/2016GL068171, 2016. a
Picard, G., Arnaud, L., Caneill, R., Lefebvre, E., and Lamare, M.: Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning, The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, 2019. a, b
Pomeroy, J. and Male, D.: Steady-state suspension of snow, J. Hydrol., 136,
275–301, https://doi.org/10.1016/0022-1694(92)90015-N, 1992. a
Pomeroy, J. W. and Gray, D. M.: Saltation of snow, Water Resour. Res.,
26, 1583–1594, https://doi.org/10.1029/WR026i007p01583, 1990. a, b
Reynolds, D. S., Pflug, J. M., and Lundquist, J. D.: Evaluating Wind Fields
for Use in Basin‐Scale Distributed Snow Models, Water Resour.
Res., 57, 028536, https://doi.org/10.1029/2020WR028536, 2021. a, b, c
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts,
J. T. M.: Acceleration of the contribution of the Greenland and Antarctic
ice sheets to sea level rise: ACCELERATION OF ICE SHEET LOSS,
Geophys. Res. Lett., 38, 046583, https://doi.org/10.1029/2011GL046583, 2011. a
Schmidt, R. A.: Threshold Wind-Speeds and Elastic Impact in Snow
Transport, J. Glaciol., 26, 453–467,
https://doi.org/10.1017/S0022143000010972, 1980. a
Shannon, K., Wagenbrenner, N., tfinney9, Forthofer, J., lmnn3, and jeffreycunn: firelab/windninja: 3.7.1 (3.7.1), Zenodo [code], https://doi.org/10.5281/zenodo.4474633, 2021. a
Sharma, V., Gerber, F., and Lehning, M.: Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling, Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, 2023. a, b, c
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur,
S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg,
S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard,
H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A., Scheuchl, B.,
Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg,
W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J.,
Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A
Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338,
1183–1189, https://doi.org/10.1126/science.1228102, 2012. a
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science, 368,
eaaz5845, https://doi.org/10.1126/science.aaz5845, 2020. a
Sørensen, M.: An analytic model of wind-blown sand transport, in: Aeolian
Grain Transport 1, edited by: Barndorff-Nielsen, O. E. and Willetts,
B. B., Springer Vienna, Vienna, vol. 1, 67–81,
https://doi.org/10.1007/978-3-7091-6706-9_4,
1991. a, b, c
Sørensen, M.: On the rate of aeolian sand transport, Geomorphology, 59,
53–62, https://doi.org/10.1016/j.geomorph.2003.09.005, 2004. a
The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to
2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Verjans, V., Leeson, A. A., McMillan, M., Stevens, C. M., van Wessem, J. M.,
van de Berg, W. J., van den Broeke, M. R., Kittel, C., Amory, C., Fettweis,
X., Hansen, N., Boberg, F., and Mottram, R.: Uncertainty in East
Antarctic Firn Thickness Constrained Using a Model Ensemble
Approach, Geophys. Res. Lett., 48, 092060, https://doi.org/10.1029/2020GL092060,
2021. a
Vionnet, V.: Études du transport de la neige par le vent en conditions alpines: observations et simulations à l'aide d'un modèle couplé
atmosphère/manteau neigeux, PhD thesis, Sciences et Techniques de
l’Environnement, Université Paris-Est, France,
https://tel.archives-ouvertes.fr/tel-00781279 (last access: 4 June 2023), 2012. a, b
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a, b
Vionnet, V., Martin, E., Masson, V., Guyomarc'h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model, The Cryosphere, 8, 395–415, https://doi.org/10.5194/tc-8-395-2014, 2014. a
Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., and Butler, B. W.: Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja, Atmos. Chem. Phys., 16, 5229–5241, https://doi.org/10.5194/acp-16-5229-2016, 2016. a
Wagner, D., Fierz, C., Lehning, M., and Bavay, M.:
snow-models, GitLab [code], https://gitlabext.wsl.ch/snow-models (last access: 7 June 2023), 2022. a
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and Lehning, M.: Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model, Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, 2020. a
Wever, N., Keenan, E., Amory, C., Lehning, M., Sigmund, A., Huwald, H., and
Lenaerts, J. T. M.: Observations and simulations of new snow density in the
drifting snow-dominated environment of Antarctica, J. Glaciol., 69, 1–18,
https://doi.org/10.1017/jog.2022.102, 2022a.
a, b, c
Wever, N., Keenan, E., and snowpack-model: snowpack-model/snowpack: f023b9f (f023b9f), Zenodo [code], https://doi.org/10.5281/zenodo.5914787, 2022b. a
Zwally, H. J., Li, J., Robbins, J. W., Saba, J. L., Yi, D., and Brenner, A. C.:
Mass gains of the Antarctic ice sheet exceed losses, J. Glaciol.,
61, 1019–1036, https://doi.org/10.3189/2015JoG15J071, 2015. a
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in...