Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2277-2023
https://doi.org/10.5194/gmd-16-2277-2023
Model description paper
 | 
27 Apr 2023
Model description paper |  | 27 Apr 2023

Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research

Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour

Related authors

ITS_LIVE global glacier velocity data in near real time
Alex S. Gardner, Chad A. Greene, Joseph H. Kennedy, Mark A. Fahnestock, Maria Liukis, Luis A. López, Yang Lei, Ted A. Scambos, and Amaury Dehecq
EGUsphere, https://doi.org/10.5194/egusphere-2025-392,https://doi.org/10.5194/egusphere-2025-392, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Elevation Change of the Greenland Ice Sheet and its Peripheral Glaciers: 1992–2023
Johan Nilsson and Alex S. Gardner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-311,https://doi.org/10.5194/essd-2024-311, 2024
Preprint under review for ESSD
Short summary
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024,https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Impact of time-dependent data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier, Greenland
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023,https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary
Widespread slowdown in thinning rates of West Antarctic ice shelves
Fernando S. Paolo, Alex S. Gardner, Chad A. Greene, Johan Nilsson, Michael P. Schodlok, Nicole-Jeanne Schlegel, and Helen A. Fricker
The Cryosphere, 17, 3409–3433, https://doi.org/10.5194/tc-17-3409-2023,https://doi.org/10.5194/tc-17-3409-2023, 2023
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014. 
Alley, R. B.: Firn densification by grain-boundary sliding: a first model, Le Journal de Physique Colloques, 48, C1–249, 1987. 
Arthern, R. J. and Wingham, D. J.: The Natural Fluctuations of Firn Densification and Their Effect on the Geodetic Determination of Ice Sheet Mass Balance, Clim. Change, 40, 605–624, https://doi.org/10.1023/A:1005320713306, 1998. 
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. 
Baker, I.: NEEM Firn Core 2009S2 Density and Permeability, Arctic Data Center [data set], https://doi.org/10.18739/A2Q88G, 2016. 
Download
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Share