Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-1961-2023
https://doi.org/10.5194/gmd-16-1961-2023
Model description paper
 | 
06 Apr 2023
Model description paper |  | 06 Apr 2023

ISAT v2.0: an integrated tool for nested-domain configurations and model-ready emission inventories for WRF-AQM

Kun Wang, Chao Gao, Kai Wu, Kaiyun Liu, Haofan Wang, Mo Dan, Xiaohui Ji, and Qingqing Tong

Related authors

Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies
H. Z. Tian, C. Y. Zhu, J. J. Gao, K. Cheng, J. M. Hao, K. Wang, S. B. Hua, Y. Wang, and J. R. Zhou
Atmos. Chem. Phys., 15, 10127–10147, https://doi.org/10.5194/acp-15-10127-2015,https://doi.org/10.5194/acp-15-10127-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025,https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary

Cited articles

Baek, B. and Seppanen, C.: CEMPD/SMOKE: SMOKE v4.8.1, Zenodo [code], https://doi.org/10.5281/ZENODO.4480334, 2021. 
Beijing Municipal Ecology and Environment Bureau (BMEE): Second National Pollution Source Census Bulletin in Beijing, 2021. 
Daniels, M., Lundquist, K., Mirocha, J., Wiersema, D., and Chow, F.: A New Vertical Grid Nesting Capability in the Weather Research and Forecasting (WRF) Model, Mon. Weather Rev., 144, 3725–3747, 2016. 
European Commission Joint Research Centre (ECJRC): Downscaling methodology to produce a high-resolution gridded emission inventory to support local/city level air quality policies, Publications Office, LU, https://doi.org/10.2760/51058, 2017. 
Download
Short summary
This study establishes an easy-to-use and integrated framework for a model-ready emission inventory for the Weather Research and Forecasting (WRF)–Air Quality Numerical Model (AQM). A free tool called the ISAT (Inventory Spatial Allocation Tool) was developed based on this framework. ISAT helps users complete the workflow from the WRF nested-domain configuration to a model-ready emission inventory for AQM with a regional emission inventory and a shapefile for the target region.
Share