Articles | Volume 16, issue 6
https://doi.org/10.5194/gmd-16-1661-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1661-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of a new spatially explicit process-based model (HETEROFOR) to simulate structurally and compositionally complex forest stands in eastern North America
Arthur Guignabert
CORRESPONDING AUTHOR
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Quentin Ponette
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Frédéric André
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Christian Messier
Centre d'Étude de la Forêt, Université du Québec
à Montréal, Montréal, QC, Canada
Institut des Sciences de la Forêt Tempérée,
Université du Québec en Outaouais, Ripon, QC, Canada
Philippe Nolet
Centre d'Étude de la Forêt, Université du Québec
à Montréal, Montréal, QC, Canada
Institut des Sciences de la Forêt Tempérée,
Université du Québec en Outaouais, Ripon, QC, Canada
Mathieu Jonard
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Related authors
No articles found.
Emile Neimry, Hugues Goosse, and Mathieu Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-5490, https://doi.org/10.5194/egusphere-2025-5490, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This study examines 180 years of drought variability in western Central Europe and its links to atmospheric circulation using three evaluated reanalysis datasets. Results reveal strong multidecadal variability, winter wetting, summer drying, and a growing influence of atmospheric evaporative demand. Four circulation patterns are identified, with recent droughts increasingly tied to the European High, marking a shift toward dynamics that intensify drought under climate change.
Cited articles
Acton, D. F., Ryder, J. M., French, H., Slaymaker, O., and Brookes, I. A.:
Physiographic Regions, in: The Canadian Encyclopedia, https://www.thecanadianencyclopedia.ca/en/article/physiographic-regions (last access: 1 March 2021), 2015.
Ameztegui, A., Paquette, A., Shipley, B., Heym, M., Messier, C., and Gravel,
D.: Shade tolerance and the functional trait: demography relationship in
temperate and boreal forests, Funct. Ecol., 31, 821–830,
https://doi.org/10.1111/1365-2435.12804, 2017.
Anderson-Teixeira, K. J., McGarvey, J. C., Muller-Landau, H. C., Park, J.
Y., Gonzalez-Akre, E. B., Herrmann, V., Bennett, A. C., So, C. V., Bourg, N.
A., Thompson, J. R., McMahon, S. M., and McShea, W. J.: Size-related scaling
of tree form and function in a mixed-age forest, Funct. Ecol., 29,
1587–1602, https://doi.org/10.1111/1365-2435.12470, 2015.
André, F., Jonard, M., and Ponette, Q.: Influence of species and rain
event characteristics on stemflow volume in a temperate mixed oak-beech
stand, Hydrol. Process., 22, 4455–4466, https://doi.org/10.1002/hyp.7048,
2008.
André, F., de Wergifosse, L., de Coligny, F., Beudez, N., Ligot, G.,
Gauthray-Guyénet, V., Courbaud, B., and Jonard, M.: Radiative transfer
modeling in structurally complex stands: towards a better understanding of
parametrization, Ann. For. Sci., 78, 92,
https://doi.org/10.1007/s13595-021-01106-8, 2021.
Andrews, C., Weiskittel, A., D'Amato, A. W., and Simons-Legaard, E.:
Variation in the maximum stand density index and its linkage to climate in
mixed species forests of the North American Acadian Region, Forest Ecol.
Manag., 417, 90–102, https://doi.org/10.1016/j.foreco.2018.02.038, 2018.
Aquilué, N., Messier, C., Martins, K. T., Dumais-Lalonde, V., and Mina,
M.: A simple-to-use management approach to boost adaptive capacity of
forests to global uncertainty, Forest Ecol. Manag., 481,
https://doi.org/10.1016/j.foreco.2020.118692, 2021.
Aubin, I., Beaudet, M., and Messier, C.: Light extinction coefficients
specific to the understory vegetation of the southern boreal forest, Quebec,
Can. J. Forest Res., 30, 168–177, https://doi.org/10.1139/x99-185, 2000.
Aubin, I., Munson, A. D., Cardou, F., Burton, P. J., Isabel, N., Pedlar, J.
H., Paquette, A., Taylor, A. R., Delagrange, S., Kebli, H., Messier, C.,
Shipley, B., Valladares, F., Kattge, J., Boisvert-Marsh, L., and McKenney,
D.: Traits to stay, traits to move: a review of functional traits to assess
sensitivity and adaptive capacity of temperate and boreal trees to climate
change, Environ. Rev., 24, 164–186, https://doi.org/10.1139/er-2015-0072,
2016.
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P.,
Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D.,
Soci, C., Villaume, S., Bidlot, J., Haimberger, L., Woollen, J., Buontempo,
C., and Thépaut, J.: The ERA5 global reanalysis: Preliminary extension
to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021.
Bohn, F. J., Frank, K., and Huth, A.: Of climate and its resulting tree
growth: Simulating the productivity of temperate forests, Ecol. Modell.,
278, 9–17, https://doi.org/10.1016/J.ECOLMODEL.2014.01.021, 2014.
Bokalo, M., Stadt, K., Comeau, P., and Titus, S.: The Validation of the
Mixedwood Growth Model (MGM) for Use in Forest Management Decision Making,
Forests, 4, 1–27, https://doi.org/10.3390/f4010001, 2013.
Bolstad, P. V. and Gower, S. T.: Estimation of leaf area index in fourteen
southern Wisconsin forest stands using a portable radiometer, Tree Physiol.,
7, 115–124, https://doi.org/10.1093/treephys/7.1-2-3-4.115, 1990.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Aboveground and belowground
biomass and sapwood area allometric equations for six boreal tree species of
northern Manitoba, Can. J. Forest Res., 32, 1441–1450,
https://doi.org/10.1139/x02-063, 2002.
Bovard, B. D., Curtis, P. S., Vogel, C. S., Su, H.-B., and Schmid, H. P.:
Environmental controls on sap flow in a northern hardwood forest, Tree
Physiol., 25, 31–38, https://doi.org/10.1093/treephys/25.1.31, 2005.
Bréda, N. J. J.: Ground-based measurements of leaf area index: a review of
methods, instruments and current controversies, J. Exp. Bot., 54,
2403–2417, https://doi.org/10.1093/jxb/erg263, 2003.
Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I.,
Gardiner, B., González-Olabarria, J. R., Lyver, P. O. B., Meurisse, N.,
Oxbrough, A., Taki, H., Thompson, I. D., van der Plas, F., and Jactel, H.:
Forest biodiversity, ecosystem functioning and the provision of ecosystem
services, Biodivers. Conserv., 26, 3005–3035,
https://doi.org/10.1007/s10531-017-1453-2, 2017.
Carpentier, J.-P.: Modélisation de la croissance et du rendement des
peuplements d'érable à sucre, Gouvernement du Québec,
Ministère de l'Energie et des Ressources, Direction de la recherche et
du développement, Mémoire de recherche forestière no. 91, 1987.
Chuine, I.: A Unified Model for Budburst of Trees, J. Theor. Biol., 207,
337–347, https://doi.org/10.1006/jtbi.2000.2178, 2000.
Chuine, I., de Cortazar-Atauri, I. G., Kramer, K., and Hänninen, H.:
Plant Development Models, in: Phenology: An Integrative Environmental
Science, Springer Netherlands, Dordrecht, 275–293,
https://doi.org/10.1007/978-94-007-6925-0_15, 2013.
Coates, K. D., Canham, C. D., Beaudet, M., Sachs, D. L., and Messier, C.:
Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the
implications of patchiness in structurally complex forests, Forest Ecol.
Manag., 186, 297–310, https://doi.org/10.1016/S0378-1127(03)00301-3, 2003.
Coleman, M. D., Dickson, R. E., and Isebrands, J. G.: Contrasting fine-root
production, survival and soil CO2 efflux in pine and poplar plantations,
Plant Soil, 225, 129–139, https://doi.org/10.1023/A:1026564228951, 2000.
Courbaud, B., de Coligny, F., and Cordonnier, T.: Simulating radiation
distribution in a heterogeneous Norway spruce forest on a slope, Agr. Forest
Meteorol., 116, 1–18, https://doi.org/10.1016/S0168-1923(02)00254-X, 2003.
Crimmins, T. M. and Crimmins, M. A.: Plant Phenology Site Phenometrics +
Accumulated Growing Degree Day Calculations for the continental United
States (2009–2016): U.S. Geological Survey data release, GS ScienceBase [data set],
https://doi.org/10.5066/F7XG9Q0X, 2017.
Deleuze, C., Morneau, F., Renaud, J. P., Vivien, Y., Rivoire, M.,
Santenoise, P., Longuetaud, F., Mothe, F., and Hervé, J. C.: Estimation
harmonisée du volume de tige à différentes découpes,
Rendez-vous Tech. ONF, 44, 33–42, 2014a.
Deleuze, C., Morneau, F., Renaud, J. P., Vivien, Y., Rivoire, M.,
Santenoise, P., Longuetaud, F., Mothe, F., Hervé, J. C., and Vallet, P.:
Estimer le volume total d'un arbre, quelles que soient l'essence, la taille,
la sylviculture, la station, Rendez-vous Tech. ONF, 44, 22–32,
2014b.
del Río, M., Löf, M., Bravo-Oviedo, A., and Jactel, H.:
Understanding the complexity of mixed forest functioning and management:
Advances and perspectives, Forest Ecol. Manag., 489, 119138,
https://doi.org/10.1016/j.foreco.2021.119138, 2021.
de Wergifosse, L., André, F., Beudez, N., de Coligny, F., Goosse, H., Jonard, F., Ponette, Q., Titeux, H., Vincke, C., and Jonard, M.: HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 2: Phenology and water cycle, Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020, 2020.
de Wergifosse, L., André, F., Goosse, H., Boczon, A., Cecchini, S.,
Ciceu, A., Collalti, A., Cools, N., D'Andrea, E., De Vos, B., Hamdi, R.,
Ingerslev, M., Knudsen, M. A., Kowalska, A., Leca, S., Matteucci, G.,
Nord-Larsen, T., Sanders, T. G., Schmitz, A., Termonia, P., Vanguelova, E.,
Van Schaeybroeck, B., Verstraeten, A., Vesterdal, L., and Jonard, M.:
Simulating tree growth response to climate change in structurally diverse
oak and beech forests, Sci. Total Environ., 806, 150422,
https://doi.org/10.1016/j.scitotenv.2021.150422, 2022.
Dufour-Kowalski, S., Courbaud, B., Dreyfus, P., Meredieu, C., and de
Coligny, F.: Capsis: an open software framework and community for forest
growth modelling, Ann. Forest Sci., 69, 221–233,
https://doi.org/10.1007/s13595-011-0140-9, 2012.
Dufrêne, E., Davi, H., François, C., Maire, G. le, Dantec, V. Le,
and Granier, A.: Modelling carbon and water cycles in a beech forest, Ecol.
Modell., 185, 407–436, https://doi.org/10.1016/j.ecolmodel.2005.01.004,
2005.
Eyre, F. H.: Forest cover types of United States and Canada, edited by:
Society of American Foresters, Washington, DC, 148 pp., ISBN 9780686306979, 1980.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149,
78–90, https://doi.org/10.1007/BF00386231, 1980.
Fontes, L., Bontemps, J.-D., Bugmann, H., Van Oijen, M., Gracia, C., Kramer,
K., Lindner, M., Rötzer, T., and Skovsgaard, J. P.: Models for
supporting forest management in a changing environment, For. Syst., 3, 8–29,
https://doi.org/10.5424/fs/201019S-9315, 2010.
Forrester, D. I.: The spatial and temporal dynamics of species interactions
in mixed-species forests: From pattern to process, Forest Ecol. Manag., 312,
282–292, https://doi.org/10.1016/j.foreco.2013.10.003, 2014.
Forrester, D. I.: Linking forest growth with stand structure: Tree size
inequality, tree growth or resource partitioning and the asymmetry of
competition, Forest Ecol. Manag., 447, 139–157,
https://doi.org/10.1016/j.foreco.2019.05.053, 2019.
Forrester, D. I., Hobi, M. L., Mathys, A. S., Stadelmann, G., and Trotsiuk,
V.: Calibration of the process-based model 3-PG for major central European
tree species, Eur. J. Forest Res., 140, 847–868,
https://doi.org/10.1007/s10342-021-01370-3, 2021.
Gonzalez-Benecke, C. A., Jokela, E. J., Cropper, W. P., Bracho, R., and
Leduc, D. J.: Parameterization of the 3-PG model for Pinus elliottii stands
using alternative methods to estimate fertility rating, biomass
partitioning and canopy closure, Forest Ecol. Manag., 327, 55–75,
https://doi.org/10.1016/j.foreco.2014.04.030, 2014.
Gonzalez-Benecke, C. A., Teskey, R. O., Martin, T. A., Jokela, E. J., Fox,
T. R., Kane, M. B., and Noormets, A.: Regional validation and improved
parameterization of the 3-PG model for Pinus taeda stands, Forest Ecol. Manag., 361, 237–256,
https://doi.org/10.1016/j.foreco.2015.11.025, 2016.
Grote, R. and Pretzsch, H.: A Model for Individual Tree Development Based on
Physiological Processes, Plant Biol., 4, 167–180,
https://doi.org/10.1055/s-2002-25743, 2002.
Guignabert, A., Ponette, Q., André, F., Messier, C., Nolet, P., and
Jonard, M.: Validation of a new spatially-explicit process-based model
(HETEROFOR) to simulate structurally and compositionally complex stands in
Eastern North-America: Dataset (Version 1), Zenodo [data set],
https://doi.org/10.5281/zenodo.7225303, 2022.
Hadiwijaya, B., Pepin, S., Isabelle, P.-E., and Nadeau, D. F.: The Dynamics
of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy
Conditions in a Humid Boreal Forest, Forests, 11, 237,
https://doi.org/10.3390/f11020237, 2020.
Hernandez-Hernandez, A.: Effects of nutrient amendments on water use and
water use efficiency in a Northeastern forest ecosystem, University of New
Hampshire, 65 pp., 2014.
Hernandez-Santana, V., Hernandez-Hernandez, A., Vadeboncoeur, M. A., and
Asbjornsen, H.: Scaling from single-point sap velocity measurements to stand
transpiration in a multispecies deciduous forest: uncertainty sources, stand
structure effect, and future scenarios, Can. J. Forest Res., 45, 1489–1497,
https://doi.org/10.1139/cjfr-2015-0009, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Jactel, H., Moreira, X., and Castagneyrol, B.: Tree Diversity and Forest
Resistance to Insect Pests: Patterns, Mechanisms, and Prospects, Annu. Rev.
Entomol., 66, 277–296, https://doi.org/10.1146/annurev-ento-041720-075234,
2021.
Jonard, M., André, F., and de Wergifosse, L.: Code of HETEROFOR 1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.3591348, 2019.
Jonard, M., André, F., de Coligny, F., de Wergifosse, L., Beudez, N., Davi, H., Ligot, G., Ponette, Q., and Vincke, C.: HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 1: Carbon fluxes and tree dimensional growth, Geosci. Model Dev., 13, 905–935, https://doi.org/10.5194/gmd-13-905-2020, 2020.
Jurjević, L., Liang, X., Gašparović, M., and Balenović, I.:
Is field-measured tree height as reliable as believed – Part II, A
comparison study of tree height estimates from conventional field
measurement and low-cost close-range remote sensing in a deciduous forest,
ISPRS J. Photogramm., 169, 227–241,
https://doi.org/10.1016/J.ISPRSJPRS.2020.09.014, 2020.
Kenefic, L. S. and Seymour, R. S.: Leaf area prediction models for Tsuga canadensis in
Maine, Can. J. Forest Res., 29, 1574–1582,
https://doi.org/10.1139/cjfr-29-10-1574, 1999.
Kitajima, K. and Fenner, M.: Ecology of seedling regeneration, in: Seeds:
the ecology of regeneration in plant communities, CAB International,
Wallingford, UK, 331–359, https://doi.org/10.1079/9780851994321.0331, 2000.
König, L. A., Mohren, F., Schelhaas, M.-J., Bugmann, H., and Nabuurs,
G.-J.: Tree regeneration in models of forest dynamics – Suitability to
assess climate change impacts on European forests, Forest Ecol. Manag., 520,
120390, https://doi.org/10.1016/J.FORECO.2022.120390, 2022.
Korol, R. L., Running, S. W., and Milner, K. S.: Incorporating intertree
competition into an ecosystem model, Can. J. Forest Res., 25, 413–424,
https://doi.org/10.1139/x95-046, 1995.
Krasowski, M. J., Lavigne, M. B., Szuter, M. A., Olesinski, J., Kershaw, J.
A., and McGarrigle, E.: Age-related changes in survival and turnover rates
of balsam fir (Abies balsamea (L.) Mill.) fine roots, Tree Physiol., 38, 865–876,
https://doi.org/10.1093/treephys/tpy010, 2018.
Kühn, N., Tovar, C., Carretero, J., Vandvik, V., Enquist, B. J., and
Willis, K. J.: Globally important plant functional traits for coping with
climate change, Front. Biogeogr., 13, 4, https://doi.org/10.21425/F5FBG53774,
2021.
Larocque, G. R., Archambault, L., and Delisle, C.: Development of the gap
model ZELIG-CFS to predict the dynamics of North American mixed forest types
with complex structures, Ecol. Modell., 222, 2570–2583,
https://doi.org/10.1016/j.ecolmodel.2010.08.035, 2011.
Lhotka, J. M. and Loewenstein, E. F.: An examination of species-specific
growing space utilization, Can. J. Forest Res., 38, 470–479,
https://doi.org/10.1139/X07-147, 2008.
Makela, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Agren,
G. I., Oliver, C. D., and Puttonen, P.: Process-based models for forest
ecosystem management: current state of the art and challenges for practical
implementation, Tree Physiol., 20, 289–298,
https://doi.org/10.1093/treephys/20.5-6.289, 2000.
Manuilova, E., Schuetzenmeister, A., and Model, F.: mcr: Method Comparison
Regression, R package version 1.2.2,
https://CRAN.R-project.org/package=mcr (last access: 15 September 2022), 2021.
Maréchaux, I., Langerwisch, F., Huth, A., Bugmann, H., Morin, X., Reyer,
C. P. O., Seidl, R., Collalti, A., Dantas de Paula, M., Fischer, R., Gutsch,
M., Lexer, M. J., Lischke, H., Rammig, A., Rödig, E., Sakschewski, B.,
Taubert, F., Thonicke, K., Vacchiano, G., and Bohn, F. J.: Tackling
unresolved questions in forest ecology: The past and future role of
simulation models, Ecol. Evol., 11, 3746–3770,
https://doi.org/10.1002/ece3.7391, 2021.
McCormack, M. L., Adams, T. S., Smithwick, E. A. H., and Eissenstat, D. M.:
Predicting fine root lifespan from plant functional traits in temperate
trees, New Phytol., 195, 823–831,
https://doi.org/10.1111/j.1469-8137.2012.04198.x, 2012.
McCormack, M. L., Eissenstat, D. M., Prasad, A. M., and Smithwick, E. A. H.:
Regional scale patterns of fine root lifespan and turnover under current and
future climate, Glob. Change Biol., 19, 1697–1708,
https://doi.org/10.1111/gcb.12163, 2013.
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H.,
Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C.,
Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers,
L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R.,
Turner, M. G., Uriarte, M., Walker, A. P., and Xu, C.: Pervasive shifts in
forest dynamics in a changing world, Science, 80, 368,
https://doi.org/10.1126/SCIENCE.AAZ9463, 2020.
McIntire, C. D.: Impacts and management of foliar pathogens of eastern white
pine (Pinus strobus) in the northeastern United States, University of New Hampshire,
Durham, Doctoral Dissertation 2397, 2018.
Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Nolet, P.,
Mina, M., Aquilué, N., Fortin, M.-J., and Puettmann, K.: The functional
complex network approach to foster forest resilience to global changes, Forest
Ecosyst., 6, 21, https://doi.org/10.1186/s40663-019-0166-2, 2019.
Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N.,
Bruelheide, H., Caldwell, B., Cavender-Bares, J., Dhiedt, E., Eisenhauer,
N., Ganade, G., Gravel, D., Guillemot, J., Hall, J. S., Hector, A.,
Hérault, B., Jactel, H., Koricheva, J., Kreft, H., Mereu, S., Muys, B.,
Nock, C. A., Paquette, A., Parker, J. D., Perring, M. P., Ponette, Q.,
Potvin, C., Reich, P. B., Scherer-Lorenzen, M., Schnabel, F., Verheyen, K.,
Weih, M., Wollni, M., and Zemp, D. C.: For the sake of resilience and
multifunctionality, let's diversify planted forests!, Conserv. Lett., 15, e12829,
https://doi.org/10.1111/conl.12829, 2021.
MFFP: Inventaire écoforestier, Ministère des Forêts, de la Faune et
des Parcs, Réseaux des placettes-échantillons permanentes du Québec, http://mffp.gouv.qc.ca/les-forets/inventaire-ecoforestier/, last access: January 2021.
Miles, P. D. and Smith, W. B.: Specific gravity and other properties of wood
and bark for 156 tree species found in North America, Res. Note. NRS-38, 35
pp., https://doi.org/10.2737/NRS-RN-38, 2009.
Mina, M., Messier, C., Duveneck, M. J., Fortin, M. J., and Aquilué, N.:
Managing for the unexpected: Building resilient forest landscapes to cope
with global change, Glob. Change Biol., 1–19,
https://doi.org/10.1111/gcb.16197, 2022.
Mori, A. S., Furukawa, T., and Sasaki, T.: Response diversity determines the
resilience of ecosystems to environmental change, Biol. Rev., 88, 349–364,
https://doi.org/10.1111/BRV.12004, 2013.
Morin, X., Lechowicz, M. J., Augspurger, C., O'Keefe, J., Viner, D., and
Chuine, I.: Leaf phenology in 22 North American tree species during the 21st
century, Glob. Change Biol., 15, 961–975,
https://doi.org/10.1111/j.1365-2486.2008.01735.x, 2009.
Morin, X., Bugmann, H., Coligny, F., Martin-StPaul, N., Cailleret, M.,
Limousin, J., Ourcival, J., Prevosto, B., Simioni, G., Toigo, M., Vennetier,
M., Catteau, E., and Guillemot, J.: Beyond forest succession: A gap model to
study ecosystem functioning and tree community composition under climate
change, Funct. Ecol., 35, 955–975, https://doi.org/10.1111/1365-2435.13760,
2021.
Niinemets, Ü. and Valladares, F.: Tolerance to shade, drought, and
waterlogging of temperate northern hemisphere trees and shrubs, Ecol.
Monogr., 76, 521–547,
https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2, 2006.
Nolet, P. and Boureima, I.: Indicateurs de qualité de site pour
l'érable à sucre., québécois d'Aménagment de la
Forêt feuillue, Ripon, Québec, 34 pp., 2009.
Nolet, P., Bouffard, D., Doyon, R., and Delagrange, S.: Relationship between
canopy disturbance history and current sapling density of Fagus grandifolia
and Acer saccharum in a northern hardwood landscape, Can. J. Forest Res., 38,
216–225, https://doi.org/10.1139/X07-160, 2008.
Nolet, P., Boureima, I., and Ostojic, S.: Rendement des érablières
sous aménagement équienne en Outaouais., Institut Québécois
d'Aménagement de la Forêt Feuillue, Ripon, Québec, 82 pp., 2010.
Nyland, R. D., Ray, D. G., and Yanai, R. D.: Height Development of
Upper-Canopy Trees Within Even-Aged Adirondack Northern Hardwood Stands,
North. J. Appl. For., 21, 117–122, https://doi.org/10.1093/njaf/21.3.117,
2004.
Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D.,
Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L.,
Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M.,
Martín-López, B., Woodcock, B. A., and Bullock, J. M.: Biodiversity
and Resilience of Ecosystem Functions, Trends Ecol. Evol., 30, 673–684,
https://doi.org/10.1016/J.TREE.2015.08.009, 2015.
Peng, C., Liu, J., Dang, Q., Apps, M. J., and Jiang, H.: TRIPLEX: a generic
hybrid model for predicting forest growth and carbon and nitrogen dynamics,
Ecol. Modell., 153, 109–130, https://doi.org/10.1016/S0304-3800(01)00505-1,
2002.
Penner, M. and Deblonde, G.: The relationship between leaf area and basal
area growth in jack and red pine trees, Forest Chron., 72, 170–175,
https://doi.org/10.5558/tfc72170-2, 1996.
Porté, A. and Bartelink, H. H.: Modelling mixed forest growth: a review
of models for forest management, Ecol. Modell., 150, 141–188,
https://doi.org/10.1016/S0304-3800(01)00476-8, 2002.
Power, H.: Comparaison des biais et de la précision des estimations des
modèles Artémis-2009 et Artémis-2014 pour la surface
terrière totale des peuplements forestiers, avec et sans coupe
partielle, sur une période de 40 ans, Note de recherche forestière
no. 143, MFFP – Direction de la recherche forestière, 1–22, 2016.
Power, H., LeMay, V., Berninger, F., Sattler, D., and Kneeshaw, D.:
Differences in crown characteristics between black (Picea mariana) and white spruce
(Picea glauca), Can. J. Forest Res., 42, 1733–1743, https://doi.org/10.1139/x2012-106,
2012.
Pretzsch, H.: Application and Evaluation of the Growth Simulator SILVA 2.2
for Forest Stands, Forest Estates and Large Regions,
Forstwiss. Centralbl., 121, 28–51, 2002.
Pretzsch, H.: Facilitation and competition reduction in tree species
mixtures in Central Europe: Consequences for growth modeling and forest
management, Ecol. Modell., 464, 109812,
https://doi.org/10.1016/j.ecolmodel.2021.109812, 2022.
Pretzsch, H., Forrester, D. I., and Rötzer, T.: Representation of
species mixing in forest growth models. A review and perspective, Ecol.
Modell., 313, 276–292, https://doi.org/10.1016/j.ecolmodel.2015.06.044,
2015.
Purves, D. W., Lichstein, J. W., Strigul, N., and Pacala, S. W.: Predicting
and understanding forest dynamics using a simple tractable model, P.
Natl. Acad. Sci. USA, 105, 17018–17022,
https://doi.org/10.1073/pnas.0807754105, 2008.
Quiñonez-Piñón, M. and Valeo, C.: Allometry of Sapwood Depth in
Five Boreal Trees, Forests, 8, 457, https://doi.org/10.3390/f8110457, 2017.
Raulier, F., Bernier, P. Y., and Ung, C.-H.: Canopy photosynthesis of sugar
maple (Acer saccharum): comparing big-leaf and multilayer extrapolations of leaf-level
measurements, Tree Physiol., 19, 407–420,
https://doi.org/10.1093/treephys/19.7.407, 1999.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.r-project.org/ (last access: 15 September 2022), 2021.
Reed, D. D., Pregitzer, K. S., Liechty, H. O., Burton, A. J., and Mroz, G.
D.: Productivity and growth efficiency in sugar maple forests, Forest Ecol. Manag., 70, 319–327, https://doi.org/10.1016/0378-1127(94)90097-3, 1994.
Reineke, L. H.: Perfecting a stand-density index for even-aged forests, J.
Agric. Res., 46, 627–638, 1933.
Ruiz-Benito, P., Vacchiano, G., Lines, E. R., Reyer, C. P. O., Ratcliffe,
S., Morin, X., Hartig, F., Mäkelä, A., Yousefpour, R., Chaves, J.
E., Palacios-Orueta, A., Benito-Garzón, M., Morales-Molino, C.,
Camarero, J. J., Jump, A. S., Kattge, J., Lehtonen, A., Ibrom, A., Owen, H.
J. F., and Zavala, M. A.: Available and missing data to model impact of
climate change on European forests, Ecol. Modell., 416, 108870,
https://doi.org/10.1016/j.ecolmodel.2019.108870, 2020.
Ryelandt, B.: Modeling oak and beech regeneration in mixed and uneven-aged
forests: a process-based approach for changing environments, Université
Catholique de Louvain, Master thesis, 2019.
Saucier, J.-P.: Le point d'observation eìcologique: normes techniques,
Ministère des Ressources naturelles du Québec, ISBN 2551132738, 1994.
Schepaschenko, D., Shvidenko, A., Usoltsev, V., Lakyda, P., Luo, Y.,
Vasylyshyn, R., Lakyda, I., Myklush, Y., See, L., McCallum, I., Fritz, S.,
Kraxner, F., and Obersteiner, M.: A dataset of forest biomass structure for
Eurasia, Sci. Data, 4, 170070, https://doi.org/10.1038/sdata.2017.70, 2017.
Schmid, S., Zingg, A., Biber, P., and Bugmann, H.: Evaluation of the forest
growth model SILVA along an elevational gradient in Switzerland, Eur. J.
Forest Res., 125, 43–55, https://doi.org/10.1007/s10342-005-0076-4, 2006.
Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., and Soil Survey Staff:
Field book for describing and sampling soils, Version 3.0, Natural Resources
Conservation Service, National Soil Survey Center, Lincoln, NE, ISBN 9781782664093, 2012.
Schwalm, C. R. and Ek, A. R.: A process-based model of forest ecosystems
driven by meteorology, Ecol. Modell., 179, 317–348,
https://doi.org/10.1016/j.ecolmodel.2004.04.016, 2004.
Seidl, R., Lexer, M. J., Jager, D., and Honninger, K.: Evaluating the
accuracy and generality of a hybrid patch model, Tree Physiol., 25,
939–951, https://doi.org/10.1093/treephys/25.7.939, 2005.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M.,
Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J.,
Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and
Reyer, C. P. O.: Forest disturbances under climate change, Nat. Clim.
Change, 7, 395–402, https://doi.org/10.1038/nclimate3303, 2017.
Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S.:
Scaling from trees to forests: tractable macroscopic equations for forest
dynamics, Ecol. Monogr., 78, 523–545, https://doi.org/10.1890/08-0082.1,
2008.
Strimbu, V. C., Bokalo, M., and Comeau, P. G.: Deterministic models of
growth and mortality for jack pine in boreal forests of Western Canada,
Forests, 8, 410, https://doi.org/10.3390/f8110410, 2017.
TNSDB: The National Soil Database: Canadian Soil Information Service, Government of Canada, https://sis.agr.gc.ca/cansis/nsdb/index.html, last access: 23 October 2021.
Thurner, M., Beer, C., Crowther, T., Falster, D., Manzoni, S., Prokushkin,
A., and Schulze, E.: Sapwood biomass carbon in northern boreal and temperate
forests, Global Ecol. Biogeogr., 28, 640–660,
https://doi.org/10.1111/geb.12883, 2019.
Trouvé, R., Bontemps, J.-D., Seynave, I., Collet, C., and Lebourgeois,
F.: Stand density, tree social status and water stress influence allocation
in height and diameter growth of Quercus petraea (Liebl.), Tree Physiol.,
35, 1035–1046, https://doi.org/10.1093/treephys/tpv067, 2015.
Trumbore, S., Brando, P., and Hartmann, H.: Forest health and global change,
Science, 349, 814–818, https://doi.org/10.1126/science.aac6759,
2015.
Ung, C.-H., Lambert, M. C., Raulier, F., Guo, J., and Bernier, P. Y.:
Biomass of trees sampled across Canada as part of the Energy from the Forest
Biomass (ENFOR) Program, Natural Resouces Canada,
https://doi.org/10.23687/fbad665e-8ac9-4635-9f84-e4fd53a6253c,
2017.
USDA – Forest Service: Section 2. Crown condition classification, in:
Forest Health Monitoring: field methods guide, USDA, Forest Service,
National Forest Health Monitoring Program: 2.1–2.7, Research Triangle Park,
NC, ISBN 1288804784, 1999.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z.,
Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer,
M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont,
B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets,
Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov,
V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and
Villar, R.: The worldwide leaf economics spectrum, Nature, 428, 821–827,
https://doi.org/10.1038/nature02403, 2004.
Wullschleger, S. D., Hanson, P., and Todd, D.: Transpiration from a
multi-species deciduous forest as estimated by xylem sap flow techniques,
Forest Ecol. Manag., 143, 205–213,
https://doi.org/10.1016/S0378-1127(00)00518-1, 2001.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S.,
Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., and Chave, J.:
Data from: Towards a worldwide wood economics spectrum, Dryad [data set],
https://doi.org/10.5061/dryad.234, 2009.
Short summary
Spatially explicit and process-based models are useful to test innovative forestry practices under changing and uncertain conditions. However, their larger use is often limited by the restricted range of species and stand structures they can reliably account for. We therefore calibrated and evaluated such a model, HETEROFOR, for 23 species across southern Québec. Our results showed that the model is robust and can predict accurately both individual tree growth and stand dynamics in this region.
Spatially explicit and process-based models are useful to test innovative forestry practices...