Articles | Volume 16, issue 6
https://doi.org/10.5194/gmd-16-1641-2023
https://doi.org/10.5194/gmd-16-1641-2023
Development and technical paper
 | 
22 Mar 2023
Development and technical paper |  | 22 Mar 2023

A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China

Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu

Related authors

Uncertainties in the effects of organic aerosol coatings on polycyclic aromatic hydrocarbon concentrations and their estimated health effects
Sijia Lou, Manish Shrivastava, Alexandre Albinet, Sophie Tomaz, Deepchandra Srivastava, Olivier Favez, Huizhong Shen, and Aijun Ding
Atmos. Chem. Phys., 25, 8163–8183, https://doi.org/10.5194/acp-25-8163-2025,https://doi.org/10.5194/acp-25-8163-2025, 2025
Short summary
Evolution of Aerosol Particle Number Size Distribution in Statistical Thermodynamic Equilibrium During New Particle Formation and Growth
Gang Zhao, Ping Tian, Chunxiang Ye, Weili Lin, Yicheng Gao, Jie Sun, Yi Chen, Fengjun Shen, and Tong Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3012,https://doi.org/10.5194/egusphere-2025-3012, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Unveiling the Formation of Atmospheric Oxygenated Organic Molecules under Anthropogenic-Biogenic Interactions: Insights from Binned Positive Matrix Factorization on Multi-Subrange Mass Spectra
Junchao Yin, Yuliang Liu, Wei Nie, Chao Yan, Qiaozhi Zha, Yuanyuan Li, Dafeng Ge, Chong Liu, Caijun Zhu, Xuguang Chi, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2025-1371,https://doi.org/10.5194/egusphere-2025-1371, 2025
Short summary
Inversion algorithm of black carbon mixing state based on machine learning
Zeyuan Tian, Jiandong Wang, Jiaping Wang, Chao Liu, Jia Xing, Jinbo Wang, Zhouyang Zhang, Yuzhi Jin, Sunan Shen, Bin Wang, Wei Nie, Xin Huang, and Aijun Ding
Atmos. Meas. Tech., 18, 1149–1162, https://doi.org/10.5194/amt-18-1149-2025,https://doi.org/10.5194/amt-18-1149-2025, 2025
Short summary
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025,https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary

Related subject area

Atmospheric sciences
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary

Cited articles

Asman, W. A. H.: Modelling the atmospheric transport and deposition of ammonia and ammonium: an overview with special reference to Denmark, Atmos. Environ., 35, 1969–1983, https://doi.org/10.1016/S1352-2310(00)00548-3, 2001. 
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. R., 20, 8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. 
Berge, E., Huang, H. C., Chang, J., and Liu, T. H.: A study of the importance of initial conditions for photochemical oxidant modeling, J. Geophys. Res.-Atmos., 106, 1347–1363, https://doi.org/10.1029/2000jd900227, 2001. 
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., VanderHoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97gb02266, 1997. 
Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands, Global Biogeochem. Cy., 16, 102, https://doi.org/10.1029/2000gb001389, 2002. 
Download
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Share