Articles | Volume 16, issue 5
https://doi.org/10.5194/gmd-16-1511-2023
https://doi.org/10.5194/gmd-16-1511-2023
Model description paper
 | 
14 Mar 2023
Model description paper |  | 14 Mar 2023

SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models

Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows

Related authors

First results of the XBAER aerosol optical depth algorithm with EnMAP data
Simon Laffoy, Marco Vountas, Linlu Mei, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2025-1282,https://doi.org/10.5194/egusphere-2025-1282, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022,https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021,https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021,https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Comparison of optical-equivalent snow grain size estimates under Arctic low Sun conditions during PAMARCMiP 2018
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14,https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Arosio, C., Rozanov, A., Malinina, E., Eichmann, K.-U., von Clarmann, T., and Burrows, J. P.: Retrieval of ozone profiles from OMPS limb scattering observations, Atmos. Meas. Tech., 11, 2135–2149, https://doi.org/10.5194/amt-11-2135-2018, 2018. a
Barkstrom, B. R.: A finite differencing method of solving anisotropic scattering problems, J. Quant. Spectrosc. Ra., 16, 725–739, 1976. a
Baum, B., Yang, P., Heymsfield, A., Platnick, S., King, M., and Bedka, S.: Bulk scattering models for the remote sensing of ice clouds Part II: Narrowband models, J. Appl. Meteor., 44, 1896–1911, 2005. a
Baum, B., Yang, P., Heymsfield, A., Schmitt, C., Xie, Y., and Bansemer, A.: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds, J. Appl. Meteorol. Climatol., 50, 1037–1056, 2011. a, b, c
Bolle, H.: A preliminary cloudless stardard atmosphere for radiation computation, WCP-112, World Meteorological Organization, https://library.wmo.int/doc_num.php?explnum_id=4988 (last access: March 2023), 1986. a
Download
Short summary
This paper summarizes recent developments of aerosol, cloud and surface reflectance databases and models in the framework of the software package SCIATRAN. These updates and developments extend the capabilities of the radiative transfer modeling, especially by accounting for different kinds of vertical inhomogeneties. Vertically inhomogeneous clouds and different aerosol types can be easily accounted for within SCIATRAN (V4.6). The widely used surface models and databases are now available.
Share