Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-859-2022
https://doi.org/10.5194/gmd-15-859-2022
Model description paper
 | 
31 Jan 2022
Model description paper |  | 31 Jan 2022

MPR 1.0: a stand-alone multiscale parameter regionalization tool for improved parameter estimation of land surface models

Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego

Related authors

From Soil to Stream: Modeling the Catchment-Scale Hydrological Effects of Increased Soil Organic Carbon
Malve Heinz, Annelie Holzkämper, Rohini Kumar, Sélène Ledain, Pascal Horton, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2025-5447,https://doi.org/10.5194/egusphere-2025-5447, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Spectral Analysis of Groundwater Level Time Series for Robust Estimation of Aquifer Response Times
Timo Houben, Christian Siebert, Thomas Kalbacher, Mariaines Di Dato, Thomas Fischer, and Sabine Attinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-5666,https://doi.org/10.5194/egusphere-2025-5666, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
QUADICA v2: Extending the large-sample data set for water QUAlity, DIscharge and Catchment Attributes in Germany
Pia Ebeling, Alexander Hubig, Alexander Wachholz, Ulrike Scharfenberger, Sarah Haug, Tam Nguyen, Fanny Sarrazin, Masooma Batool, Andreas Musolff, and Rohini Kumar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-450,https://doi.org/10.5194/essd-2025-450, 2025
Preprint under review for ESSD
Short summary
How well do process-based and data-driven hydrological models learn from limited discharge data?
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 5005–5029, https://doi.org/10.5194/hess-29-5005-2025,https://doi.org/10.5194/hess-29-5005-2025, 2025
Short summary
Soil moisture droughts in Belgium during 2011–2020 were the worst in five decades
Katoria Lekarkar, Oldrich Rakovec, Rohini Kumar, Stefaan Dondeyne, and Ann van Griensven
EGUsphere, https://doi.org/10.5194/egusphere-2025-4526,https://doi.org/10.5194/egusphere-2025-4526, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Cited articles

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J. M., Kavčič, I., Maynard, C. M., Melvin, T., Müller, E. H., Mullerworth, S., Porter, A. R., Rezny, M., Shipway, B. J., and Wong, R.: LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models, J. Parallel Distr. Com., 132, 383–396, https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. a
Andre, B., Kluzek, E., and Sacks, W.: CLM Community Land Model, available at: https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/index.html (last access: 16 January 2022), 2020. a, b
Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L.: Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation, Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, 2020. a
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009. a, b
Beck, H. E., Dijk, A. I. J. M. v., Roo, A. d., Miralles, D. G., McVicar, T. R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of hydrologic model parameters, Water Resour. Res., 52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016. a, b
Download
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables environmental modelers to efficiently use extensive datasets for model setups. It flexibly ingests the datasets using user-defined data–parameter relationships and rescales parameter fields to given model resolutions. Modern land surface models especially benefit from MPR through increased transparency and flexibility in modeling decisions. Thus, MPR empowers more sound and robust simulations of the Earth system.
Share