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Abstract. Distributed environmental models such as land
surface models (LSMs) require model parameters in each
spatial modeling unit (e.g., grid cell), thereby leading to a
high-dimensional parameter space. One approach to decrease
the dimensionality of the parameter space in these models is
to use regularization techniques. One such highly efficient
technique is the multiscale parameter regionalization (MPR)
framework that translates high-resolution predictor variables
(e.g., soil textural properties) into model parameters (e.g.,
porosity) via transfer functions (TFs) and upscaling opera-
tors that are suitable for every modeled process. This frame-
work yields seamless model parameters at multiple scales
and locations in an effective manner. However, integration
of MPR into existing modeling workflows has been hindered
thus far by hard-coded configurations and non-modular soft-
ware designs. For these reasons, we redesigned MPR as a
model-agnostic, stand-alone tool. It is a useful software for
creating graphs of NetCDF variables, wherein each node is a
variable and the links consist of TFs and/or upscaling oper-
ators. In this study, we present and verify our tool against a
previous version, which was implemented in the mesoscale
hydrologic model (mHM; https://www.ufz.de/mhm, last ac-
cess: 16 January 2022). By using this tool for the genera-
tion of continental-scale soil hydraulic parameters applicable
to different models (Noah-MP and HTESSEL), we show-
case its general functionality and flexibility. Further, using
model parameters estimated by the MPR tool leads to signif-
icant changes in long-term estimates of evapotranspiration,
as compared to their default parameterizations. For example,
a change of up to 25 % in long-term evapotranspiration flux

is observed in Noah-MP and HTESSEL in the Mississippi
River basin. We postulate that use of the stand-alone MPR
tool will considerably increase the transparency and repro-
ducibility of the parameter estimation process in distributed
(environmental) models. It will also allow a rigorous uncer-
tainty estimation related to the errors of the predictors (e.g.,
soil texture fields), transfer function and its parameters, and
remapping (or upscaling) algorithms.

1 Introduction

Distributed environmental models simulate key fluxes and
states of the atmosphere, land surface, and subsurface for
a given spatial domain and time period (e.g., CLM, Andre
et al., 2020, JULES, Best et al., 2011, or ORCHIDEE, Krin-
ner et al., 2005). The underlying physical processes are sim-
plified with parameterizations that are manifested as com-
puter algorithms. Parameterizations are idealized represen-
tations of reality, and as such there is inherent uncertainty
in their formulation. They require additional variables and
model parameters in order to perform simulations. The lat-
ter could be constant, or it could be spatially and temporally
variable over the simulation domain (i.e., the so-called dis-
tributed model parameters). Constant model parameters do
not allow accurate characterization of environmental pro-
cesses over a range of climatic regimes and geophysical
properties (Samaniego et al., 2010; Beck et al., 2016). The
number of distributed model parameters tend to scale linearly
with the number of spatiotemporal units, which is defined
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by the coordinates along each dimension of the parameter-
ized process. Model parameters are often fine-tuned to match
observed fluxes and states of physical processes in various
fields, such as hydrology (Zink et al., 2017; Pagliero et al.,
2019), Earth system sciences (Troy et al., 2008), and hy-
draulics (Shoarinezhad et al., 2020). Currently, there exists
a plethora of methods for parameter estimation (Samaniego
et al., 2017), which is the process of estimating a set of
model parameters over the whole domain and their respec-
tive distribution functions. Such methods include classifica-
tion linked through lookup tables (for example, ECMWF,
2019; Andre et al., 2020), direct calibration (for example,
Li et al., 2018; Arheimer et al., 2020), calibration and re-
gionalization (for example, Carrera et al., 2005; Oudin et al.,
2008; Samaniego et al., 2010; Rojas-Serna et al., 2016; Hun-
decha et al., 2016), and probabilistic methods (for example,
González-García et al., 1998; Thiemann et al., 2001). Opti-
mization issues related to parameter estimation through cali-
bration tasks are often solved by the application of optimiza-
tion algorithms (for example, Duan et al., 1993; Tolson and
Shoemaker, 2007).

Distributed models have a parameter space with a
very large dimensionality (Schaake, 2003). Even if high-
performance computing (HPC) is available, it is not only
numerically infeasible to estimate parameters for every in-
dividual grid cell but also an ill-posed problem in lieu of
limited availability of reference datasets (Kirchner, 2006).
Samaniego et al. (2017), for example, indicated the presence
of large differences in parameter estimation methods and the
derived distributed parameter fields for many state-of-the-art
global hydrological models (GHMs) and land surface models
(LSMs). Regionalization techniques, such as multiscale pa-
rameter regionalization (MPR) (Samaniego et al., 2010), pro-
vide an approach for reduction of dimensionality of param-
eter space through efficient use of regularization functions
to estimate spatially explicit model parameters (Pokhrel and
Gupta, 2010; Gupta et al., 2014).

The MPR framework operates on a two-step procedure. In
the first step, it employs transfer functions (TFs) to translate
high-resolution geophysical properties into high-resolution
model parameters. It can easily meet the requirements posed
by Van Looy et al. (2017) to couple information from dif-
ferent datasets (e.g., soil, vegetation, and topography) or es-
tablish time-varying parameters depending on changes in
land use or climate (Vereecken et al., 2019). In the second
step, high-resolution parameters are upscaled using upscal-
ing operators to the spatial resolution and topology of the se-
lected spatial units at which the model is to be applied. The
resulting quasi-scale-independent parameters explicitly con-
sider sub-grid variability and predictor uncertainty if multi-
ple sources are used (Samaniego et al., 2010; Kumar et al.,
2013b; Rakovec et al., 2016; Dembélé et al., 2020). Opti-
mization approaches therefore should adjust the (globally ap-
plied) parameters of the TFs and the parameters of the up-
scaling operator.

Currently, MPR is implemented as part of the source
code of the mesoscale hydrologic model (mHM) (Samaniego
et al., 2010; Kumar et al., 2013b) and cannot be easily
adapted for other models. Furthermore, this mHM-bound
version is restricted to rectangular grids and uses a hard-
coded set of TFs for model parameters required by the mHM
specifically. Mizukami et al. (2017) proposed a flexible ver-
sion of MPR (MPR-flex) to estimate parameters for the hy-
drological models VIC (Liang et al., 1994; Hamman et al.,
2018) and SAC (Burnash, 1995). This tool is also limited
to a set of model-specific parameters: namely, TFs and the
two targeted models. In recent years, there have been nu-
merous applications of MPR as a parameter estimation tech-
nique for other models (for example, Samaniego et al., 2017;
Mizukami et al., 2017; Imhoff et al., 2020); however, no
generic software currently exists. In addition, existing ap-
plications are more targeted toward hydrologic applications;
nevertheless, challenges persist with regards to accurate es-
timation of the seamless fields of model parameters across
a variety of spatial resolutions in different compartments of
Earth system science models.

Therefore, a new MPR tool that provides a tailored
framework for distributed parameter estimation is urgently
needed (Van Looy et al., 2017; Vereecken et al., 2019). With
this aim in mind, we propose an MPR framework that can
be used as a preprocessor for both large-scale applications of
land surface models and global or regional hydrologic mod-
els. It needs to be a flexible, model-agnostic, lightweight,
and high-performance tool with few external dependencies.
Another key goal is to allow the MPR tool to be embed-
ded in optimization workflows such that TFs and remapping
techniques can be easily modified (Van Looy et al., 2017).
Thus, the configuration overhead should be kept minimal.
Although targeted towards and originating from the LSM
community, the development of MPR is aimed at supporting
parameter estimation for distributed models in any scientific
field.

One key challenge is establishing a proper linkage
between model parameters and suitable predictor vari-
ables (Clark et al., 2016; Blöschl et al., 2019). Most cur-
rently used TFs are derived from commonly observed or
measured predictors and parameters (Van Looy et al., 2017).
Mathematical frameworks (e.g., linear regression models, ar-
tificial neural networks, and random forests) are applied to
training datasets in order to develop functional relationships.
However, TFs can also be inferred through inverse meth-
ods. Emerging methods for the development of TFs do ex-
ist (Klotz et al., 2017; Feigl et al., 2020; Merz et al., 2020).
MPR provides the interface to link these tools to distributed
environmental models.

Providing a library of remapping schemes is crucial, as
the parameterizations in environmental models are not ap-
plied on the scales at which they were derived. For example,
the Richardson and Richards’ equation (Richardson, 1922;
Richards, 1931) describing unsaturated water flow through
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porous media at the representative elemental volume scale is
often used at the landscape scale (say 102 km). The inherent
uncertainty of the physical parameters describing this phe-
nomenon needs to be adequately considered by the choice of
transfer functions and upscaling operators (Montzka et al.,
2017; Vereecken et al., 2019). More generally, flow rates
such as saturated hydraulic conductivity are common param-
eters in environmental models, and their scaling behavior
should be considered (Zhu and Mohanty, 2002; Kumar et al.,
2013b). Additionally, their anisotropic properties necessitate
a dimension-dependent selection of upscaling operators (e.g.,
harmonic and arithmetic mean).

In this paper, we first present a working example to il-
lustrate current challenges in the estimation of distributed
parameter fields in environmental models. We would like
to provide hands-on information to environmental modellers
from the Earth system science communities in Sects. 2, 3.5,
4, and 5.

Section 2 outlines different ways to estimate distributed
parameters and deducts feature requirements for the MPR
tool. Section 3.5 highlights those features and the resulting
applicability. In Sect. 4, we demonstrate the versatility of
the MPR tool by reproducing an open-source dataset (EU-
SoilHydroGrids Tóth et al., 2017) containing soil hydraulic
properties derived from a set of TFs. We demonstrate its tight
coupling to the hydrologic model mHM and its capabilities
with regard to the reproduction of the original mHM model
behavior. The effects on long-term evapotranspiration from
the coupling of MPR to state-of-the-art land surface models
(Noah-MP and HTESSEL) are also shown. This is achieved
by an effective TF application and parameter regridding that
is applicable to any model that requires distributed param-
eters (e.g., LSM or environmental models). Section 5 con-
cludes our work on the parameter estimation tool MPR.

Section 3.1 to 3.4 contain details of the technical imple-
mentation of MPR that are interesting for software engineers
and model developers that would like to integrate MPR in
their software. We show how the new generic and agnostic
MPR tool is designed and configured to meet the required fea-
tures. Section 3.2 elucidates the configuration of MPR and is
followed by a detailed description of how to interface MPR
through a stand-alone executable, as well as through its API
(application programming interface), in Sect. 3.4.

2 A minimal working example in environmental
modeling

2.1 Objective

For demonstration purposes we define an objective that is
commonly encountered in environmental modeling. For a hy-
pothetical intercomparison project, the influence of different
parameter estimation schemes for soil parameters is investi-

Figure 1. Example application of MPR deriving porosity based on
SoilGrids250m (Hengl et al., 2017) variables (bulk density, organic
matter, clay and sand content) in Florida, USA

gated for a given domain along with two different resolutions
and three different model-specific grid types.

A common parameter present in many environmental
models is soil porosity (θs), which denotes the pore volume
fraction of the total soil volume in the vadose zone. The Soil-
Grids (SG) dataset (Hengl et al., 2017) provides soil physical
properties at a high resolution (1/480◦). From the extensive
literature on pedotransfer functions (TFs for soil parameters)
(Patil and Singh, 2016), we selected a TF for estimating θs
based on bulk density, organic matter, clay, and sand con-
tent (Weynants et al., 2009). The southeastern United States,
which includes the state of Florida, was chosen as the do-
main of interest due to high heterogeneity in the physical
properties of the soil in this region. We selected different grid
layouts that are often used in different modeling disciplines.
These are regular rectangular grids generally used in dis-
tributed environmental modeling (Ma et al., 2017; Zink et al.,
2017), icosahedral grids representing the group of geodesic
grids increasingly used in the earth system science commu-
nity (Zängl et al., 2015; Skamarock et al., 2012), and poly-
gons or hydrologic response units (HRUs) often used in hy-
drology or the soil sciences (Wellen et al., 2015).

https://doi.org/10.5194/gmd-15-859-2022 Geosci. Model Dev., 15, 859–882, 2022



862 R. Schweppe et al.: MPR 1.0: a stand-alone multiscale parameter regionalization tool

The exemplary workflow depicted in Fig. 1 shows the
high-resolution predictor variables (shown in the lower-left
corner) that are passed to the transfer function (TF) to derive
the resulting porosity (lower-right corner) at the predictor
resolution. It exhibits considerable heterogeneity in various
gradients between the southeast and northwest regions of the
domain, coastal and inland areas, riverbeds, and mountain-
ous areas. The target variable is then upscaled to six differ-
ent spatial grids at different resolutions. Regular rectangular
grids with resolutions of 1/8 and 1◦ are shown in the left col-
umn of the top panel of Fig. 1. The lower grid is the same
as the one used for the North American Land Data Assim-
ilation System 2 forcing dataset (Mitchell et al., 2004). The
latter dataset covers the domain of the conterminous United
States (CONUS) and has been used for different LSMs (Xia
et al., 2012). The two icosahedral grids specified by the iden-
tifiers R02B04 and R02B05 (Fig. 1 the center column in the
top panel Zängl et al., 2015) can be used for the configuration
of LSM JSBACH (Mauritsen et al., 2019). Finally, polygons
denoting the WBDHU4 and WBDHU6 domains (Fig. 1, right
column in the top panel) and the realizations of the Na-
tional Watershed Boundaries Dataset (Service Center Agen-
cies, 2019) can be used for HRU-based (Flügel, 1995) mod-
els such as SWAT (Gassman et al., 2007) or PRMS (Mark-
strom et al., 2015). The figure demonstrates how different
grids represent compromises between conservation of sub-
grid heterogeneity and reduction of spatial complexity. Al-
though the parameter gradients in the valleys in South Car-
olina in the parameter fields of the 1/8◦ rectangular grid are
still visible, they are not visible in the other grids. The re-
duced number of grid cells allows for a lower computational
load during model run times (simulations).

This parameter estimation routine, which is followed by
simulations of the distributed model, might then be used it-
eratively by a calibration routine in order to optimize TF pa-
rameters. These are global parameters of the TF whose ap-
plication to the predictors is used to derive the effective dis-
tributed model parameters. Next, a workflow to derive these
parameters in an efficient and consistent manner is presented.

2.2 Options for parameter estimation workflow

There exists a range of different options for the workflow
described in the previous section, which we briefly describe
here. A few existing software tools and general circulation
model (GCM) couplers can be used to perform the two key
steps of applying a TF and remapping a multi-dimensional
grid onto an another.

1. In climate sciences, the command line data-processing
tools cdo (Schulzweida, 2019), nco (Zender, 2008) or
TempestRemap (Ullrich and Taylor, 2015) are com-
monly used. cdo and nco can perform both application
of TFs (ncap2 operator) and remapping (ncremap
operator). TempestRemap, however, serves solely as
a regridding library.

To perform parameter estimations using one of these
tools, we need to establish a stack of calls to the expr
operator and remap. This can be achieved either di-
rectly or from a scripting language, for which wrapper
libraries are provided. To improve the usability of the
approach, the setup would need a wrapper library on its
own to manage file input/output (I/O), parameters, coor-
dinates, transfer functions, and upscale operations. One
advantage of the developed MPR tool is that the entire
workflow is described in a single configuration file.

2. Numerous couplers of Earth system models
(ESMs) contain routines for the remapping of
variables, e.g., ESMF (Collins et al., 2005) with
RegridWeightGen, Atlas (Deconinck et al., 2017),
and OASIS (Craig et al., 2017). For example, parts
of the ESMF library can be compiled to the ESMF
RegridWeightGen application, which readily in-
terfaces with multiple NetCDF-based grid formats and
performs a number of different remapping algorithms.
In addition, LFRic (Adams et al., 2019) and Atlas also
provide a data model explicitly designed to support
HPC applications. All of the aforementioned software
tools and couplers expose their API and are publicly
available and actively maintained by their respective
communities.

Coupling libraries perform a multitude of tasks and thus
have a code base of considerable size. The installa-
tion procedure requires multiple dependencies on third-
party software and is extremely demanding. Apart from
RegridWeightGen, access to the correct sections of
the API for remapping and function evaluation is not
easily attainable. Accurate imitation of MPR function-
ality would require a setup similar to that of cdo, as
well as establishment of a wrapper that effectively exe-
cutes a set of commands or directly accesses the back-
end routines.

3. The processing of polygon-based data from shapefiles
or geodatabases is often conducted using Geographic
Information Systems (GIS) such as QGIS (QGIS de-
velopment team, 2020) or ArcGIS (ESRI, 2020). The
support of NetCDF-based data has been introduced in
recent versions of QGIS by the MDAL library (MDAL
contributors, 2020). GIS possesses a large inventory for
handling spatial data and associated visualizations.

After launching the target program, for example QGIS,
the predictor dataset needs to be loaded and the TF must
be applied on the variable through the field calculator. A
new layer is created through application of the appropri-
ate spatial interpolation plugin. The exporting of work-
flow steps to Python is available for automatization.
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2.3 Motivation for a new software tool

To the best of our knowledge, none of the aforementioned
GCM couplers and GIS support out-of-the-box TF and up-
scaling applications. Although cdo and nco support dy-
namic evaluation of algebraic expressions, their implemen-
tation is cumbersome, bound to heavy disk I/O, and has a
long run time because of the dynamic evaluation of the trans-
fer function. Additionally, not every tool supports remapping
between polygons (e.g., basin boundaries or hydrological re-
sponse units). cdo poses further restrictions on variable di-
mensions (conventionally, it supports only specific x, y, z
and t axes). The support of dimension-dependent upscaling
operators is not available for remapping tools (e.g., vertical
dimensions must be handled differently than horizontal di-
mensions in aggregation of soil horizon specific parameters).

Previous software implementations of the MPR frame-
work (Samaniego et al., 2010; Mizukami et al., 2017) have
limited applicability as a result of hard-coded parameters,
TFs, and upscaling operators.

The aforementioned restrictions inspired the motivation to
rewrite MPR from scratch. The new tool has some key advan-
tages.

– It can use multiple, high-resolution datasets on different
grids for parameter estimation.

– It allows for applying the MPR technique for any dis-
tributed model, namely calculating model parameters at
the highest resolution possible before aggregating to a
model resolution.

– It can incorporate an arbitrary number of predictor vari-
ables, TFs, and upscaling operators

– It has a low run time because of it is implemented in
Fortran.

– The reproducibility of the parameter estimation work-
flow is increased.

The example runs of MPR producing the parameter fields
for the regular 1/8◦ and WBDHU6 polygons in Fig. 1 from
predictor variables at 1/480◦ resolution consumed a maxi-
mum of 29 and 24 GB memory with a total run time of 5 min
and 1 s and 16 min and 33 s, respectively. Those values were
estimated by the Valgrind tool and for an executable com-
piled by the GFortran compiler on a computing cluster.

Some of its advantages also have a respective trade-off. As
such, the tool depends on Fortran compilers and the NetCDF
library, which can be cumbersome to install. In addition, the
MPR technique poses a high memory requirement. In its cur-
rent development state, MPR was designed to be coupled
with specific LSMs that require the NetCDF input format for
its distributed parameters. Usage of MPR therefore is only
possible for models that support the setting of (distributed)
parameters in the NetCDF format.

3 Salient configurations of the developed MPR tool

3.1 Nomenclature, conventions, and general design

The API is closely built around the NetCDF file format (ver-
sion > 4.4.1) (Unidata UCAR, 2020). The resemblance of
the NetCDF format is motivated by its widespread use in en-
vironmental modeling and its paradigm of being scalable,
portable, and self-describing. A file typically contains nu-
merous multidimensional variables. Each dimension of each
variable is an array of monotonically ordered integers and
can be shared among multiple variables. Each variable and
dimension has a name, and the referencing of dimensions is
done using these names. The CF (Climate and Forecast) con-
vention (Eaton et al., 2017) further defines a coordinate vari-
able as a one-dimensional variable sharing the same name
as its associated dimension. Its values are ordered mono-
tonically and missing values are prohibited. Auxiliary co-
ordinate variables also contain coordinate information, but
their names differ from their dimensions. Attributes contain-
ing meta-information can be added to various objects such as
variables, dimensions, and the file itself.

MPR adopted this concept and nomenclature for its data
structures while imposing a number of additional restric-
tions. MPR variables are called Data_Arrays, as variables
is a very generic term. We drop the concept of dimensions in
favor of coordinate variables. This is necessitated by the fact
that each cell needs to be explicitly bounded along its di-
mensions to avoid ambiguities during upscaling. Coordinate
variables are referred to as Coordinates. Data_Arrays
need to point to instances of Coordinates defining their
extent. We also assume that each one-dimensional coordi-
nate variable, in principle, represents not a point but an in-
terval (or cell) and that adjacent intervals are contiguous
for one-dimensional coordinates. MPR supports the bound-
ary variables as defined by Eaton et al. (2017) and is gen-
erally able to handle two-dimensional auxiliary coordinate
variables as well. Thus, MPR accepts either one-dimensional
or two-dimensional auxiliary coordinate variables. Users can
set custom string attributes to coordinate variables for creat-
ing a self-describing output file.

3.2 Interfacing a standalone executable MPR

We show an example configuration in Fig. 2 to derive a target
variable that is similar to what is shown in Fig. 1 (marked as
medium non-rectangular grid).

The configuration is performed in a Fortran-native, hier-
archically organized namelist format (comparable to .json,
.yaml, .ini, etc.). MPR has three required sections and two
optional sections. Users can enter the minimal required in-
formation in a flexible and intuitive manner. The required
sections Main, Data_Arrays, and Coordinates and
the optional sections Parameters and Upscalers are
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Figure 2. Example mpr.nml file for calculating k0 for the R02B05 ICON grid following Weynants et al. (2009) using the SoilGrids (Hengl
et al., 2017) dataset.

designed as arrays of respective objects whose specific prop-
erties are set using the correct list index.

The term Data_Arrays refers to any n-dimensional
variable and serves as a generic term for predictors and
target variables. In lines 1ff. in Fig. 2, there are four
Data_Arrays specified: the first three are read directly
from file, while the fourth is calculated from the former. The
property from_data_arrays specifies the array of pre-
dictors to be used. They also appear in the TF equation that
is supplied as a string in transfer_func. It follows the
Fortran syntax for operators, brackets, and some elemental
mathematical functions (see Appendix Table E1 for a list
of possible operators). Users can use any parameter defined
in Parameters in a TF. The TF string is not dynami-
cally evaluated during execution because it leads to unnec-
essarily high computational run times. Additionally, the ef-
fort required to modify the Fortran source code each time a
new function is used would substantially diminish the user-
friendliness of the MPR tool. Instead, a Python preproces-
sor script is implemented that interprets and adds the transfer

function from the namelist and modifies the source code ac-
cordingly. At run time, simple search and replacement rou-
tines translate the string into a unique function ID that is
checked against all unique function IDs in the source code.

The target coordinates and associated upscaling operators
are set with target_coord_names and upscale_ops.
Upscaling operators are real numbers provided as strings.
They specify the p parameter of the Hölder mean and ge-
ometric mean (Sykora, 2009) (when entered as a real num-
ber). Alternatively, the subgrid minimum, maximum, sum,
variance, or the value with the largest area fraction can be
used when entered as a string. A full list of all possible op-
erators is provided in Appendix Table E2. A flag to_file
can be set to signal the data array to be stored on the disk.

All parameters referred to from any TF can be specified
by name and value in the Parameters section (l. 18 ff.
in Fig. 2). The TF for the fourth data array requires multi-
ple parameters (e.g., a5). Accordingly, more parameters can
be set and reused in multiple TFs, while users should avoid
naming duplications with TF operators or data arrays. Pa-
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rameters usually encompass constants and variable parame-
ters subject to optimization, and as such the Parameters
section can also be read from a separate file containing only
the parameters subject to optimization. This file is optional,
and its parameters replace previously read parameters in the
case of duplicates.

The target coordinates are specified in the Coordinates
section (l. 26 ff. in Fig. 2). The user explicitly specifies
the boundaries of the soil layers by values in this exam-
ple (coord_from_values). These refer to the stagger of
each cell or horizon (coord_stagger). In this case, the
first cell does not have a neighboring cell boundary, and
as such the user must specify the coordinate boundary to
provide a start value (coord_from_values_bound). A
two-dimensional coordinate serving as the target grid is read
from the file (coord_from_file). Its associated dimen-
sions are specified through coord_sub_dims. Alterna-
tively, coordinate values can be specified from a range if the
user provides values for start, step, and count.

The Main section (l. 37 ff. in Fig. 2) configures gen-
eral information. The link from the target coordinates to
the respective source coordinates during upscaling is con-
structed through the coordinate_groups entries. Dur-
ing upscaling, each source coordinate needs to receive a
target coordinate. If the source coordinate shares the same
coordinate_group as one of the target coordinates, up-
scaling is performed for that coordinate pair. Users can enter
an arbitrary number of groups, although a dimension system
with x, y, z, and t is most commonly defined. Finally, the
path to the output file is set.

A more exhaustive description of the aforementioned con-
figuration can be found in https://chs.pages.ufz.de/MPR/
index.html, last access: 16 January 2022.

3.3 Interdependence of parameters

MPR allows for constructing arbitrarily complex interdepen-
dency graphs between predictors and the temporary and final
(output) data arrays. As such, it is for example possible to
link soil related parameters not only to soil properties but
also to land use or geological predictors or any of its deriva-
tive properties. However, a basic requirement is that the re-
quired dimensions for each Data_Array need to be present
in the predictor Data_Arrays referenced by the Data_Array’s
TF. Such an example configuration is shown in Fig. 3. for
creation of NetCDF variable graphs, where each node is a
Data_Array and the links consisting of TFs and/or upscal-
ing operations. It visualizes the dependency graph for two of
the parameters required for the mHM in its standard configu-
ration. The blue ellipses denote the predictor variables used.
While land_cover is a three-dimensional array with coor-
dinates, year, latitude, longitude (t1, y, x), lai_class is a
three-dimensional array with coordinates, month of year, lat-
itude, and longitude (t2, y, x). The TF for the model parame-
ter PET_LAI_corr_factor requires both leaf area index

(LAI) and land cover information. Both predictors need to be
broadcast to a four-dimensional array (t1, t2, y, x), and thus
temporary arrays are created. The TF for the model param-
eter Aerodyn_resist requires information on canopy
and wind measurement height, while the wind measurement
height is derived from the former alone. For the calculation
of canopy_height, a max-normalized LAI is needed for
each cell. The Data_Array contains this information, and its
broadcast variant LAI_max_t2_4D will thus be the same
shape as the other predictors of the TF responsible for pro-
ducing canopy_height. The two model parameters high-
lighted by the red ellipsis are finally upscaled to the target
model resolution with coordinates modeling year, month of
year, low-resolution latitude, and low-resolution longitude.

3.4 Interfacing MPR library

While the previous section introduced the use of MPR as
a standalone wrapper, we anticipate a tight coupling of the
MPR code to the main modeling code. We intend to im-
pose maximum reusability of the MPR API and ease its im-
plementation into other libraries. Top-level objects such as
Data_Arrays or Coordinates can be reused multiple times
and can also be written to and read from the disk as re-
quested. The Fortran API is used here for this purpose, which
is based on the object-oriented programming paradigm and
exposes four main objects (derived type in Fortran), which
are also present in the namelist configuration (see previ-
ous section): Coordinate, Parameter, Data_Array,
and CoordUpscaler. After initialization, these types are
stored in global arrays that allow for cross-referencing with
other types. They are briefly described in this section, and ad-
ditional detail can be found at the following URL: https://chs.
pages.ufz.de/MPR/index.html, last access: 16 January 2022.

3.4.1 Coordinate type

One central derived type in MPR is the Coordinate.
First and foremost, it stores the boundaries of its n cells.
In the case of a (one-dimensional) coordinate variable, each
cell has two boundaries (v = 2), and as cells are contigu-
ous, the boundaries do not need to be stored in a (v,n)-
shaped array but in an (n+ 1) array. This property is termed
boundaries1d. In the case of a two-dimensional aux-
iliary coordinate variable, the number of boundaries and
edges can vary. To obtain a general formulation, we stored
the boundaries of both dimensions in an (v,n)-shaped ar-
ray. These properties are termed boundaries2dDim1 and
boundaries2dDim2. Additionally, the cell centers are
stored in centers2dDim1 and centers2dDim2.

3.4.2 Parameter type

Parameters are objects with names and numerical values
assigned to them.
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Figure 3. Dependency graph of two of the mHM parameters in their standard configuration.

3.4.3 Data_Array type

The main derived type is the Data_Array, which can
be read directly from an existing NetCDF file (blue circle
in Fig. 3) or computed from other Data_Arrays and/or
Parameters using TF and upscaling operators (red and
black circle in Fig. 3). It stores multidimensional data, which
must be passed to multiple other routines. In order to have a
common sparse data container, non-masked cells are stored
in a one-dimensional array data with type real, regard-

less of the number of underlying dimensions. A Boolean
mask of the data is stored in a flattened, one-dimensional
array, reshapedMask. A one-dimensional array pointing
to its associated Coordinates is set as coords. This
holds the shape information of the original uncompressed
data. These core properties, reshapedMask, data, and
coords, are pointed at from within the wrapper type
InputFieldContainer. It is used for referencing the
core properties of the Data_Array and are usually passed
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as an argument for the TransferHelper type, which is
described in the next section.

3.4.4 Application of transfer functions

The type TransferHelper is intended to be used
for the initialization of Data_Array, which origi-
nates from either a file or from other Data_Arrays
via TFs (e.g., see canopy_height in Fig. 3). Dur-
ing its initialization, it performs checks on the passed
InputFieldContainer, checks their Coordinates,
optionally concatenates Data_Arrays, and optionally
adapts their masks. After these checks, the TF is applied. TFs
are designed as a subroutine accepting an arbitrarily sized
list of InputFieldContainer (its data property is ac-
cessed only) and Parameters. An abstract interface for
TFs thus allows for a variable number of predictor arrays and
parameters. A one-dimensional array is returned. We provide
a template for a subroutine containing a TF so that users
can modify the source code and implement their own TFs
(see Appendix Fig. D1). This enables the integration of more
complex mathematical formulations such as artificial neural
networks or support vector machines. Based on the major-
ity of TFs used in existing LSMs (Van Looy et al., 2017),
we anticipate users primarily using TFs that employ common
mathematical operators such as multiplication and division.
Such equations can be automatically parsed from configura-
tion files and inserted into the Fortran source code using a
Python preprocessor, which is described next.

Each TF string occurring in a namelist is translated
into a unique identifier. For example, string exp(a5
+ c5 * sand + d5 * bd + e5 * om) /
unit_conversion (Fig. 2) can be set in the con-
figuration file and will then be analyzed and processed
by a parser routine. MPR replaces all parameters (a5,
c5, d5, e5, unit_conversion) and variable names
(sand, bd, om) by identifiers, translating the result-
ing string (exp (p1 + p2 * x1 + p3 * x2 +
p4 * x3) / p5) into a unique function identifier
(exp_bs_p1_pl_p2_ti_x1_pl_p3_ti_x2_pl_p4_
ti_x3_be_di_p5). This identifier represents the exact
mathematical function that can be used for multiple appli-
cations with different Data_Arrays and Parameters.
The number of TFs contained in the source code is thereby
reduced, and duplications of TFs are avoided. TFs support
multiple operators such as scalar numeric expressions
(e.g., ∗, /, +, log, . . . ), trigonometric functions, relational
operators (>=,==, . . . ), logical expressions, and constructs
using if and where expressions (see Appendix Table E1).
The resulting identifier is checked against existing identifiers
in the source code.

3.4.5 API for upscaling

For the upscaling step, two Coordinates sharing the
same dimensions are compared. In Fig. 3, this step is for
example performed when comparing each coordinate of
PET_LAI_corr_factor with its predictors. There, di-
mensions x, y, and t1 all need to be scaled from a high
to a low resolution. For each cell of the target grid, the
underlying n source cells (subcells) are stored in an
ids array, and their relative contributing area is stored in
a weights array. These properties are contained in the type
CoordUpscaler. They can be initialized from existing
remapping weights stored in the NetCDF file format follow-
ing the SCRIP convention (Jones, 2010). By default, first-
order conservative remapping is used for weight calculation,
and thus the integral of the values is preserved in the pres-
ence of missing values. Two-dimensional auxiliary coordi-
nate variables are mapped using a simple algorithm that only
checks that the cell center of the source cell is within the tar-
get cell boundaries and assigns equal weights to each source
cell. In the future, more sophisticated remapping schemes for
two-dimensional coordinate variables will be implemented.

The upscaling of a Data_Array is conducted through
the wrapper type UpscaleHelper, which is also a
property of the Data_Array type. It consists of a
one-dimensional array pointing to the source coordinates
sourceCoords and target coordinates targetCoords,
as well as the upscale operator names for each target
coordinate upscaleOperatorNames. The Upscaler
type performs multiple checks on the source and tar-
get coordinates of Data_Array. If applicable, it trans-
poses or broadcasts the Data_Array if the order of
source and target coordinates does not match. Multiple
CoordUpscaler instances can be combined with an ag-
gregated CoordUpscaler object, effectively combining
the weights and subcell IDs when the user specifies the same
upscaling operator for multiple coordinates of the target grid.
The upscaling operation is then executed separately for each
group of target dimensions using the same upscaling oper-
ator. Again, the upscaling for the example Data_Array
PET_LAI_corr_factor in Fig. 3 is conducted for di-
mensions x, y, and t1 consecutively and governed by the
wrapper type UpscaleHelper. There are a number of
standard upscaling operators, such as the minimum, maxi-
mum, or weighted generalized mean function, which employ
the power parameter (see Appendix Table E2). Users can eas-
ily add another upscaling function to the source code as long
as it effectively aggregates the variability of the subcells into
one value (see Appendix Fig. D2).

3.5 New features of current MPR release

The current set of features encompasses the functionality of
the previous version of MPR as used in the mHM source
code (Samaniego et al., 2019). This implementation lacks
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some key features that are highlighted by a comparison of
Fig. 1 with Fig. 1 in Kumar et al. (2013a). First, the new MPR
library is modularized and refactored, and thus it does not
depend on mHM and its integrated optimization algorithms.
Second, the original mHM implementation required grids to
be rectangular, and the target resolution was a multiple of the
source resolution. Finally, predictors, TFs, upscaling opera-
tors, and target grids can now be freely chosen and recom-
bined in an MPR configuration file. This allows users to gen-
erate a set of parameter fields without any restrictions. Pre-
viously, parameter fields were bound to mHM requirements,
and their properties could only be altered through changing
the source code and were accessible only after a model run
through its restart files.

Furthermore, it allows for a modular and flexible con-
figuration of parameter estimation without common prepro-
cessing steps of the input files (resorting coordinates, re-
naming variables, adding missing meta-information, apply-
ing unit conversion, etc.). Use of MPR is easy and intuitive,
especially in the formulation of TFs, defining new coordi-
nate variables, and assigning them to variables. The initial-
ization of coordinate variables can be performed dynami-
cally depending on existing coordinate variables (e.g., by
using its bounds). The user can freely and flexibly enter
simple regression-based TFs in a semi-automatic manner.
More sophisticated functions, such as artificial neural net-
works or support vector machines, can be easily coupled to
the code. The same holds true for upscaling operators. We al-
lowed MPR to be easily integrated in workflows (e.g., auto-
calibration) or have an API called from an external code.

Coordinate variables can be split and combined, which
enables users to set coordinate-dependent parameter values
(e.g., for certain horizons along a soil profile). The order of
coordinate variables for individual variables can be changed.
MPR supports up to five-dimensional variables without re-
strictions on their kind. Different upscaling operators can be
chosen for each coordinate to be upscaled. Intermediate vari-
ables can be reused for the creation of other variables, allow-
ing the creation of complex graphs of parameter interdepen-
dencies. Parameters can also be reused for multiple TFs.

4 Applications of MPR

4.1 Verification of MPR against previous version in
mHM

The core objective of the new MPR tool was to reproduce the
same model behavior as the original implementation of MPR
in the mesoscale hydrological model (mHM) (Samaniego
et al., 2019), which we refer to as mHM-MPR here. The
model description, its code modifications, and the MPR con-
figuration can be found in Appendices B1 and C1.

The comparison of the new MPR tool coupled to mHM
with mHM-MPR shows that they yield the same simulation

Figure 4. Saturated hydraulic conductivity values for the Nether-
lands generated for different scales and different tools: (a) EU-
SoilHydroGrids (Tóth et al., 2017) at 250 m, (b) TF16 (Tóth et al.,
2015) applied on SoilGrids (Hengl et al., 2017) using R package
euptf at 250 m, (c) TF16 (Tóth et al., 2015) applied on SoilGrids us-
ing MPR (Hengl et al., 2017) (Weynants and Tóth, 2014) at 250 m,
(d) EU-SoilHydroGrids (Tóth et al., 2017) at 1 km, panel (e) is the
same as (b) but at 1 km, (f) TF16 (Tóth et al., 2015) applied on
SoilGrids250m and scaled to 1 km using MPR, and (g) TF16 (Tóth
et al., 2015) applied on SoilGrids250m and scaled to 25 km using
MPR.

results within a tolerance of 0.1 %, which can be attributed to
floating point precision deviations after the conversion of the
input file format from text files to NetCDF. In a default model
configuration of the Moselle River basin in Central Europe,
the coupled version reproduced the same model parameter
arrays. Consequently, this leads to differences in the hydro-
graph of the basin outlet within 10−5 m3 s−1, as compared to
the previous implementation.

4.2 Reproducing the EU-SoilHydroGrids dataset with
MPR

We selected the EU-SoilHydroGrids (SHG) dataset (Tóth
et al., 2017) as it is relevant to the Earth system modeling
community and is publicly available. The same holds true
for its predictors and the TFs used. We reproduced the afore-
mentioned dataset and showed the salient seamless spatial
scaling feature of the MPR tool. The dataset description and
its configuration can be found in Appendices B2 and C2 and
the MPR configuration in the Supplement.
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Figure 4 shows the spatial distribution of Ks (soil-
saturated hydraulic conductivity) on a logarithmic scale for
different resolutions and data sources at a depth of 15 cm,
with values ranging across 3 orders of magnitude from 10−6

to 10−3 m s−1. Each row of the plot shows grids with the
same spatial resolution, and each column shows the data
sources and processing schemes.

The values were estimated using a decision tree with 21
leaves (Tóth et al., 2015, Table S1, model 16). When we
attempted to reproduce the SHG values (Fig. 4a) with the
recommended procedure in Tóth et al. (2015) using an R-
library (Fig. 4b), we obtained a bias of up to 10 % in com-
parison to Fig. 4a. An investigation of the SoilGrids version
1 meta-information (https://www.isric.org/explore/soilgrids,
last access: 16 March 2019) revealed that the SoilGrids (SG)
dataset is subject to frequent updates depending on the ar-
rival of new source soil profiles. We could not verify the ex-
act version of SG used to create the SHG, but we assume
that it was different than the one we used. The high bias ob-
served is a result of the decision tree, as small deviations in
predictor values might result in use of a different branch. An
additional source for the observed bias could be the projected
coordinate system used for the SHG, in contrast to SG being
available in the geographical WGS84 coordinate system.

When using MPR to apply the TFs to the SG dataset
(Fig. 4c), we obtained a mean relative bias below 0.06 %
compared to Fig. 4b, which was only due to rounding errors
of the global parameters. SHG and SG are also available at
a 1 km resolution, where variables are aggregated using the
Geospatial Data Abstraction Library (GDAL/OGR contribu-
tors, 2019) average method (Fig. 4d and e).

In accordance with the MPR framework, we derived the
1 km Ks field by averaging the high-resolution SG data at
250 m (Fig. 4c). Because the selected TF is based on a deci-
sion tree algorithm, there exist only some discrete values in
Fig. 4d and e, whereas spatial averaging increases the vari-
ability of the derived parameter field. The capability of MPR
in flexible aggregation of the data is shown in Fig. 4g). A
resolution of 25 km was arbitrarily selected as the target res-
olution, as specific resolutions (e.g., 1 km) are typically not
needed by users. By merely changing a single number in the
configuration file, it is possible to scale the variable at inter-
est to every user-defined resolution. This analysis highlights
the capability of MPR in reproduction of environmental pa-
rameters and generation of outputs that meet specific user
requirements.

4.3 Application with land surface model Noah-MP

We used the land surface model (LSM) Noah-MP (Niu et al.,
2011) as an example to showcase the capability of MPR
in coupling with state-of-the-art distributed environmental
models. The model description and configuration can be
found in Appendices B3 and C3 and the MPR configuration
in the Supplement. We found that the inherent parameter un-

certainty that occurs when choosing a TF and an upscaling
operator for the soil parameters of the model eventually leads
to differences in long-term mean annual evapotranspiration
(ET) flux, up to 20 % (Fig. 5) in relation to its default setup.

Figure 5 shows the absolute values of the default model
parameters Ks [m s−1

] (log10-transformed) and θs[−] and
the resulting long-term annual ET flux [mm yr−1] in the first
row (maps 1a–c). The following rows (2–4) show the rela-
tive differences (in %) of the field with respect to the de-
fault simulation in row 1. The relative differences observed
when using the MPR approach with the same soil dataset,
same TF, and subsequent spatial upscaling are shown in the
second row (subplots 2a–c). Larger differences occur in re-
gions with considerable subgrid heterogeneity in soil texture,
where the hydraulic parameters associated with the mean tex-
tural information of the dominant class do not represent un-
derlying variability. Absolute differences of more than 5 %
for both parameters occur in Florida, parts of Nebraska, and
parts of the southwestern United States. The average differ-
ence is −1.6 % and −1.3 % for both parameter fields, and
a greater variability can be found for θs. The difference for
the long-term ET flux is −3 % on average, with pronounced
low values of less than−10 % in the aforementioned regions.
The lower ET fluxes are due to the accumulated effects of
lower porosity and lower hydraulic conductivity, which leads
to decreased storage capacity and capability to meet evapo-
ration water demands. It is important to keep in mind that
these changes stem solely from using non-classified continu-
ous soil textural information and aggregation of subgrid pa-
rameters, in contrast to using the dominant soil type. In other
words, variation originates from different methods of han-
dling sub-grid variability.

In the next step, we replaced the TF in MPR with another
continuous TF based on the linear regression of the predic-
tors of sand content, clay content, and organic matter (Sax-
ton and Rawls, 2006) (maps 3a–c in Fig. 5). This TF is also
available within Noah-MP version 4.0. This leads to Ks val-
ues that are on average 4.7 % higher than in the default setup.
Application of the TF results in a decreased θs over the ma-
jority of the domain, with average values around−8.6 %. The
ET fluxes exhibit a decrease for most of the CONUS in com-
parison to the default setup (on average −4.0 % with max-
ima in the Appalachians of 18.4 % and minima in Florida of
−27.3 %) .

Yet another spatial pattern of parameter values is produced
by application of the TF of Vereecken et al. (1989) for θs
and Vereecken et al. (1990) for Ks. TFs use the predictors of
sand content, clay content, bulk density, and organic matter.
While the overall relative differences in comparison to the
default parameter distribution of Ks are positive, there are
negative differences of approximately −25 % in the north-
western areas of the CONUS domain, in Florida, and along
the US east coast between Louisiana and Virginia. An in-
verse signal can be observed for the parameter θs. The overall
decrease in ET that predominates in Texas, Florida, and the
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northern Rocky Mountains highlights the nonlinear depen-
dence of ET on the modified soil parameters as a new spa-
tial pattern occurs. However, the results obtained must be as-
sessed critically. Significant differences in parameter values
in some areas indicate the limited applicability of the chosen
TF. Indeed, high values of bulk density exist in parts of south-
ern CONUS, and high organic matter contents are present in
Oregon, Washington, and along the western coastline. The
reported range of values (0.01 % to 6.6 % for organic mat-
ter content and 1.04 to 1.23 g cm−3 for bulk density) upon
which the regression for the TF was computed (Vereecken
et al., 1989) is based on a small dataset of soil samples from
Belgium. This does not cover the range of the values present
in the chosen soil dataset (i.e., SG). The applicability of a
given TF needs to be evaluated in the context of the utilized
soil database (Wösten et al., 2001).

The model bias for a standard Noah-MP configuration in
comparison to the reference product FLUXNET has been as-
sessed in a previous study (Ma et al., 2017). They observed a
spatial pattern in the long-term bias of ET in regards to pre-
scribed leaf area index (LAI), which showed similarities to
the pattern seen in Fig. 5 2c, 3c, and 4c. Although the setup
of Noah-MP was not identical, MPR might serve as a valu-
able tool in addressing the problem of model bias through
improved parameter estimation.

Cuntz et al. (2016) investigated parameter sensitivity in
simulated fluxes by Noah-MP. They reported a strong sen-
sitivity of ET on the soil parameters θs and Ks, which is in
accordance to our findings shown in Fig. 5. One limitation in
their results is that they directly investigated grid cell-specific
parameters. As a result, the dimensionality of the parame-
ter space linearly scales with the area of the model domain.
Thus, only a few catchments using a spatially constant scale
factor could be used. Using MPR, the number of TF param-
eters remains independent of the size of the model domain,
which allowed us to conduct a more spatially comprehen-
sive sensitivity analysis. At the same time, MPR requires TFs
for every parameter, which indicates that the uncertainty due
to the choice of TF cannot be neglected when conducting a
sensitivity analysis. For example, MPR and Noah-MP can
be executed subsequently by an optimization algorithm. The
optimizers draws new parameter sets for MPR that result in
updated soil parameter maps for Noah-MP. In turn, updated
ET fields are calculated by Noah-MP.

4.4 Application with land surface model HTESSEL

We used the land surface model HTESSEL (Balsamo et al.,
2009) as an example to showcase the capability of MPR
in coupling with state-of-the-art distributed environmental
models. HTESSEL is the land surface scheme used within
the integrated forecasting system developed at the European
Center for Medium-Range Weather Forecasts (ECMWF).
The model description and its configuration can be found in

Appendices B4 and C4 and the MPR configuration in the
Supplement.

Similar to the application of Noah-MP (Fig. 5), we found
differences in the long-term evapotranspiration (ET) flux of
up to 15 % over the Mississippi River basin (Fig. 6) when
using different transfer functions to compute soil hydraulic
properties.

Figure 6 is organized in the same way as Fig. 5. In its de-
fault configuration based on SoilGrids (SG), there exist only
five different soil classes over the entire domain. Through a
lookup table, each class is assigned the values for the van
Genuchten model (Genuchten, 1980) of the hydraulic con-
ductivity curve (Eq. 1) and moisture retention curve (Eq. 2):
Ks, α, n, l, θr, and θs. It is worth mentioning that this
lookup table was originally derived for the FAO 2003 soil
map (CBL, 2007).

γ =Ks

[(
1+ (αh)n

)1−1/n
− (αh)n−1

]2

(
1+ (αh)n

)(1−1/n)(l+2) , (1)

θ(h)= θr+
θs− θr(

1+ (αh)n
)1−1/n . (2)

The most common values are 1.16e-6 m s−1 and 0.439 %
for Ks and θs, respectively. These values correspond to the
medium soil texture class in the lookup table. High Ks val-
ues (up to 4.6e-5 m s−1) can be found in Missouri, Kansas,
and the Nebraska Sandhills. Occurrences of high θs values
of 0.52 (fine texture) can be found in Missouri and Kansas.
Notably, both parameter maps show the distribution of only
two out of the six soil hydraulic parameters. This parameter
selection is a dominant part of all soil hydraulic properties
that are relevant for simulated ET. However, it is not suffi-
cient to show the highly nonlinear relationship between soil
hydraulic properties (i.e., hydraulic conductivity curves and
moisture retention curve) and simulated ET at every loca-
tion. Long-term ET values increase from 250 to 1450 mm
per year along a gradient from the northwest to the southeast
of the domain (Fig. 61c). We selected two sets of TFs from
the literature to calculate soil hydraulic properties (Zacharias
and Wessolek, 2007; Wösten et al., 2001). These TFs are ap-
plied to SG and can easily be implemented in MPR. After
application of TF 2 (Zacharias and Wessolek, 2007), the pa-
rameter values θs are reduced by about −9.0 % (Fig. 6.2b).
The highest differences occur again in Missouri and Kansas
(around −30 % to −47 % for θs). This TF does not contain
Ks and the default Ks values are thus used. The change in θs
reduces long-term ET flux by about −5.0 % (Fig. 6.2c). This
can be expected because soil moisture storage (i.e., porosity)
is generally reduced (Fig. 6.2b). In turn, the amount of water
available for plant transpiration is limited. The use of TF 3
(Wösten et al., 2001) for the estimation of Ks and θs reduces
parameter values by approximately −6 % for Ks and −7 %
for θs on average over the entire domain. Applying TF 3 re-
duces porosity (Fig. 6.3b) in a similar order of magnitude
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Figure 5. Grid plot showing maps of parameters and simulation results for Noah-MP. Columns denote the following parameters and variables:
(a) soil parameter Ks (saturated hydraulic conductivity) at the soil horizon between 0.1 and 0.3 m, (b) soil parameter θs (maximum soil
moisture content) at the soil horizon between 0.1 and 0.3 m, and (c) mean annual evapotranspiration values of Noah-MP. Rows denote the
following configurations: row (1) shows the standard Noah-MP setup using the dominant USDA soil class based on SoilGrids (Hengl et al.,
2017) and a lookup table based on the TF from (Cosby et al., 1984), and rows (2)–(4) show the relative differences ((MPR− default) / default)
in percentage of parameters and simulation results using an MPR setup with a TF from Cosby et al. (1984), Saxton and Rawls (2006), and
Vereecken et al. (1989, 1990), respectively.

compared to TF 2. Additionally, saturated hydraulic conduc-
tivity is reduced at most by 16 % resulting in reduced ET in
comparison to the default setup (Fig. 6.3c). This reduction is
not as strong as that of TF 2 because the reduced Ks values
increase the water holding capacity of the soil.

By producing continuous fields of parameter values with
MPR, increased (decreased) Ks values are found in regions
with low (high) default values. Similarly, the highest reduc-
tions of θs are found in regions with the highest default val-
ues. This highlights that the MPR-derived fields reduce the
amplitude of the parameter values but substantially increase

the spatial variability. MPR-derived fields make more use of
the spatial information of the soil dataset and lead to more
realistic spatial parameter fields. It is worth mentioning that
the spatial patterns for changes in ET do not correspond to
either changes in parameter fields or the spatial pattern of the
default ET values. This indicates the complex interplay be-
tween ET and soil hydraulic properties and calls for a deeper
analysis of all MPR-derived soil parameters (i.e., also α, n,
l, θr, etc.).
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Figure 6. Maps of parameters and simulation results for HTESSEL. Columns denote the following parameters and variables: (a) soil param-
eterKs (saturated hydraulic conductivity) at the soil horizon between 0.07 and 0.28 m, (b) soil parameter θs (maximum soil moisture content)
at the soil horizon between 0.07 and 0.28 m, and (c) mean annual evapotranspiration (ET) values of HTESSEL. Rows denote the following
configurations: row (1) shows the standard HTESSEL setup using the dominant soil classes based on the SoilGrids dataset (Hengl et al., 2017)
and lookup table based on the TF from (Balsamo et al., 2009), and rows (2)–(3) show the relative differences ((MPR− default) / default) of
parameters and simulation results using MPR based on SoilGrids (Hengl et al., 2017) with TFs from Zacharias and Wessolek (2007) (TF2)
and Wösten et al. (2001) (TF3), respectively.

4.4.1 Differences between HTESSEL and Noah-MP
over the Mississippi River basin

This section compares the effect of similar changes in soil
parameters on long-term model outputs for both models pre-
sented in the previous sections. While it does not provide a
rigorous model intercomparison, it puts the results into con-
text and provides a template for future studies that can use
MPR to systematically assess differences in parameters and
parameterizations across models.

There are several differences between the simulations con-
ducted with Noah-MP and HTESSEL that go beyond the fact
that these two are based on different mathematical models.
First, the default simulations compute different amounts of
long-term ET (compare 1c in Figs. 5 and 6). Both maps ex-
hibit a similar spatial pattern, but the long-term ET flux for
HTESSEL is approximately 20 % higher than that of Noah-
MP. This might be due to the use of different forcing datasets
NLDAS2 (Xia and NCEP/EMC, 2009) and ERA5 (ECMWF,

2019) for Noah-MP and HTESSEL, respectively. Xu et al.
(2019) and Saxe et al. (2020) suggest mean precipitation of
ERA5 is higher than in NLDAS2 in the study domain.

Second, the default soil hydraulic parameters show a dif-
ferent spatial pattern (compare panels 1a and 1b in Figs. 5
and 6). The default setup uses a lookup table with a limited
number of soil classes based on the TFs from Cosby et al.
(1984) for Noah-MP and HYPRES (1997) for HTESSEL.
The estimation of the effective soil class follows the domi-
nant class approach, which leads to a limited spatial variabil-
ity of soil hydraulic properties for both models. It is worth
mentioning that both lookup tables were derived for other
soil maps than the one used in this study (for example, CBL
(2007) for HTESSEL). Here, we applied both default lookup
tables to the same dataset (SG) to rule out differences coming
from different soil maps. While a decreased spatial variabil-
ity, especially for HTESSEL, with only five active soil tex-
ture classes is found, the Cosby TF leads to a more consistent
spatial pattern for Noah-MP. In addition to the spatial pat-
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tern, the parameter values themselves are also different for
both models. θs for Noah-MP varies around 0.46, and HT-
ESSEL again shows slightly lower values of approximately
0.44. Ks is on average around 2.5e-6 m s−1 for Noah-MP
and much lower with 1.16e-6 for HTESSEL. These striking
differences are in agreement with Samaniego et al. (2017),
where a more exhaustive model comparison was performed.
This study again highlights the need for a common protocol
to assess parameter uncertainty in distributed models.

Third, using other TFs than the default ones leads to re-
ductions in long-term ET that are less than 10 % in magni-
tude for both models (compare the right columns in Figs. 5
and 6). A similar magnitude of influence by varied soil pa-
rameters on ET has been reported previously by Livneh et al.
(2015) for mHM in the Mississippi River basin. There is no
consistent pattern between models in regard to where these
changes manifest themselves. An example for that are the
Nebraska Sandhills. While ET is generally increased by TFs
in HTESSEL in this region, the opposite is the case in Noah-
MP. Direct interpretation of the interplay of soil parameters
in the soil water hydraulics is easier with Noah-MP due to
the simpler mathematical model for soil hydraulic parame-
terization. Noah-MP uses the Campbell parameterization to
relate hydraulic conductivity to soil saturation (Campbell,
1974). In contrast, HTESSEL uses Mualem–van Genuchten
parameterization (Genuchten, 1980), which leads to complex
changes in moisture retention curves and hydraulic conduc-
tivity curves that are highly nonlinearly impacted by changes
in model parameters (not all of them are shown here). No-
tably, models react to changes in (a limited number of) model
parameters for the case of ET fluxes investigated here. Larger
changes can be found for other fluxes of the water cycle and
sub-annual timescales (not shown).

In spite of demonstrated differences in model forcing, con-
figuration, and process parameterization, MPR-derived pa-
rameter fields significantly changed long-term model output.
The harmonization and reproducibility of parameter estima-
tion across models through MPR opens up an avenue to a
deeper understanding of the relationship between predictors,
parameters, and model parameterization.

4.5 Limitations and outlook

MPR was tested with compiler GNU Gfortran versions
> 7.3, the NAG Fortran Compiler version > 6.2, and In-
tel ifort version > 18. These compiler configurations are
tested continuously. We will invest further effort into devel-
oping MPR so that scalability on high-performance comput-
ers (HPCs) and parallelization is improved. A hybrid MPI
and Open-MP parallelization will be applied. The need for
support of advanced and massively parallel regridding and
interpolation capabilities will likely lead to the integration of
one of the existing remapping libraries used in GCM cou-
plers in an upcoming version of MPR. The coupling of MPR
to the LSM HTESSEL by extraction of hard-coded and hid-

den parameters and the development of TFs in an ongoing
project will likely serve as a template that can be adapted for
other models.

5 Conclusions

Parameter regionalization enables the creation of seam-
less parameter fields for complex distributed models that
can otherwise only be inferred through calibration or by
default values that are often obtained at inappropriate
scales (Samaniego et al., 2017). MPR is a framework that
regionalizes parameters through the application of transfer
functions and aggregations to any spatiotemporal coordinate
system. In this study, we introduced a complete rewrite of
the MPR framework (Samaniego et al., 2010; Kumar et al.,
2013b) to overcome the limitations of previous implemen-
tations and comparable software (for example, Mizukami
et al., 2017). MPR is able to introduce new flexibility to
mHM and other models accepting distributed parameters
through the support of multiple grid structures and a more
flexible configuration of the parameter estimation process.
It is capable of reproducing effective parameter fields (Tóth
et al., 2017) by applying transfer functions (Tóth et al.,
2015), while also being able to remap and upscale the pa-
rameters onto every modeling unit (rectangular grids, HRUs,
arbitrary shapes) required by the model. We demonstrated
that parameter estimation not only exerts a strong influence
on effective model parameter fields but also results in mod-
ified evapotranspiration simulated by land surface models,
even when MPR is applied to only two sensitive parameters.
The same holds true for models that use a tiling approach for
handling subgrid heterogeneity.

The superiority of the MPR approach toward standard
parameter estimation approaches was first demonstrated by
Samaniego et al. (2010); Kumar et al. (2013b); Samaniego
et al. (2017) and is now available for use with many other
models. This is possible because MPR is designed to flexi-
ble, modular, and as easy to use as possible. We provide an
API that users can easily modify and that can be success-
fully tightly coupled to the hydrologic model mHM. As such,
we invite implementation of further transfer functions (TFs)
and upscaling operators in other distributed modeling code.
MPR provides a way forward in addressing many current
challenges regarding the estimation of distributed parameter
fields in the Earth system model community (as postulated
by Van Looy et al., 2017), such as coupled parameterizations
and TF validation in large-scale applications. It serves as a
protocol for systematic development of new TFs and aggre-
gation schemes or upscaling approaches. As such, it makes
the whole process of parameter estimation transparent and re-
producible. It can easily produce time- or process-dependent
parameters (e.g., tillage systems, swell or shrink behavior
of clay minerals). MPR can also be used to combine mul-
tiple predictors to obtain new TFs (e.g., soil and land use
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predictors for plant root parameters or topology and climate
for snow parameters). Most importantly, MPR enables users
to specifically consider multiple commonly neglected uncer-
tainty sources inherent in the geophysical data, TF, and up-
scaling functions. It is valuable for large-scale environmental
models, where there is a current lack of effective parameter
estimation, sensitivity analysis, and calibration (Beck et al.,
2016).

Appendix A: Data processing

A1 Processing of input data for minimal working
example

1. Download the data from the server (https://files.
isric.org/soilgrids/former/2017-03-10/data/, last access:
16 January 2022; please note that the use of this data
source is discouraged by the data providers as a newer
version of SoilGrids is available), with the bulk density
(fine earth), clay content, sand content, and soil organic
carbon content (fine earth fraction) for all available soil
depths at the original resolution of 250 m.

2. Transform the data from the tiff to the NetCDF format,
clip the selected domain, and merge the different layers
into one file per variable (script in annex).

3. Download the target grids (e.g., for the ICON
model (Zängl et al., 2015) grids, refer to http://
icon-downloads.mpimet.mpg.de/mpim_grids.xml, last
access: 16 January 2022) following the SCRIP conven-
tion (Jones, 2010) for storing grids in the NetCDF for-
mat.

4. Select an example TF from the literature (e.g., Weynants
et al., 2009).

5. Construct a configuration file mpr.nml for MPR in the
native Fortran namelist format (Fig. 2).

Appendix B: Model descriptions

B1 mHM

mHM conceptualizes the dominant hydrological processes
on the land surface through multiple reservoirs. The pro-
cesses of canopy interception, snow accumulation and melt-
ing, water infiltration into the soil and percolation to the
groundwater, evaporation and transpiration, runoff genera-
tion, and river routing are accounted for on a spatially ex-
plicit grid. The model has been applied in a wide range of
applications and has been shown to be able to fulfill the flux-
matching criterion over multiple scales (Samaniego et al.,
2017).

B2 SoilHydroGrids

An increasing number of publications on high-resolution
land surface datasets has led to the development of derivative
datasets providing model parameters. Usually these datasets
are available for a fixed resolution and domain only. Here,
we demonstrate how MPR can be used to apply the TFs and
remap the result on the domain and resolution as required.
MPR is capable of reproducing the EU-SoilHydroGrids
dataset (SHG) (Tóth et al., 2017) at a given 250 m and 1 km
resolution.

B3 Noah-MP

Noah-MP simulates the terrestrial water, energy, and carbon
budget and estimates fluxes between various storage com-
ponents in the biosphere, lithosphere, and hydrosphere. Its
predecessor Noah (Ek et al., 2003) was superseded by Noah-
MP by implementing multi-parameterization options and im-
proved physics for various ecohydrological processes. For
each grid cell, the vertical model structure was discretized
into one canopy layer using a semi-tile approach, three snow
layers, four soil layers, and an unconfined subsurface layer.

B4 HTESSEL

HTESSEL calculates water, energy, and carbon fluxes and
storage across the land surface and uses a tiling approach to
represent different land covers within one model grid cell.
It uses 20 plant functional types to describe vegetation and
constant soil properties throughout the soil column. The soil
has a standard depth up to 2.89 m.

Appendix C: Model configuration for application

C1 mHM

MPR is required in order to reproduce the model parame-
ters created by the internal version of MPR in mHM ver-
sion 5.10 (Samaniego et al., 2019) and consequently the
same model results. The fact that mHM incorporates vari-
ous auto-calibration approaches that need control over the
parameter estimation process necessitates a tight coupling of
mHM to MPR in Fortran. We configured MPR to represent
the complex interplay of model parameters. The configura-
tion for mHM encompassed the use of over 100 different
Data_Array instances with over 60 TFs (see the config-
uration in the Supplement). The mHM code was refactored
and adapted to allow for the passing of global parameters
from mHM to MPR and to allow the effective parameter
fields to be received.

C2 SoilHydroGrids

SoilHydroGrids is based on the SG dataset (Hengl et al.,
2017) at 250 m and an aggregated 1 km resolution. Linear
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functions and decision tree-based functions were used for the
TFs (Tóth et al., 2015). A collection of relevant soil hydraulic
parameters for the European domain are provided in SHG.
We selected the subdomain of the Netherlands for the pa-
rameter saturated hydraulic conductivity, as it shows a large
degree of variability in this region. The MPR configuration
file is attached in the Supplement.

C3 Noah-MP

We use the default WRF-Hydro parameterization process
(version 3.6) at NCAR (2020), except for the radiative trans-
fer option where a modified two-stream option was used. Me-
teorological model forcings were taken from the NLDAS-2
dataset (Xia and NCEP/EMC, 2009). The 1/8◦ spatial res-
olution and hourly temporal resolution of the forcing vari-
ables (air temperature, precipitation, specific humidity, wind
speed, surface pressure, downward shortwave radiation, and
downward longwave radiation) also constitute the chosen
model resolution for Noah-MP. The SG dataset (Hengl et al.,
2017) was used to estimate soil parameters, whereas the
MODIS-IGBP (Friedl et al., 2010) dataset was used to de-
rive vegetation parameters. In the default setup, soil textural
data was averaged over the soil column and classified into
12 classes using the Staff (1993) scheme. Finally, the dom-
inant type within a model grid cell was used. The exact pa-
rameters were then derived from class-specific default values
provided in the lookup tables. These default values were de-
rived by applying a set of TFs (Cosby et al., 1984) to the
mean textural properties of the respective soil class. Vegeta-
tion parameters were also estimated based on the default val-
ues for each effective land cover class. The Noah-MP model
version 3.9 was used and slightly modified to explicitly allow
for two specific spatially distributed model parameters to be
read. We used the default soil layering of horizon boundaries
at depths of 0.1, 0.4, 1.0, and 2.0 m.

In addition to this default setup, we used MPR to esti-
mate the soil parameters SATDK (soil-saturated hydraulic
conductivity) and MAXSMC (maximum soil moisture con-
tent). Noah-MP shows a substantial sensitivity to both of
these parameters along a gradient of hydro-climate condi-
tions in the CONUS (Cuntz et al., 2016). The two parameters
were estimated directly on a high-resolution soil dataset us-
ing the following continuous TFs: TF 1 (Cosby et al., 1984),
TF 2 (Saxton and Rawls, 2006), and TF 3 (Vereecken et al.,
1989, 1990). TF 1 is used in Noah-MP as a default option,
TF 2 was later introduced as an option in Noah-MP version
4.0, and TF 3 was chosen in this study to demonstrate the
effect of a TF based on soil samples from outside the study
domain. The arithmetic mean was used to upscale the param-
eters to the model resolution, except for the vertical scaling
of Ks along the soil horizons for which the harmonic mean
was used. The parameters REFSMC (soil moisture content at
field capacity) and WLTSMC (soil moisture content at wilt-

ing point) were rescaled by the ratio of the default and mod-
ified θs values (θ ′ref = θref ∗ θ

′
s/θs).

The Noah-MP model was run for 28 years at an hourly
time step from 1980 to 2007. We allowed the model to run
for an entire period and used the resulting state variables as
initial conditions for the final run. The final evaluation pe-
riod covered the decade 1991–2000. The hourly simulation
results were aggregated to mean annual values.

C4 HTESSEL

Meteorological forcing data were taken from the ERA5
dataset (ECMWF, 2019). The 1/4◦ spatial resolution and 3-
hourly temporal resolution of the forcing variables (air tem-
perature, precipitation (rain and snow), specific humidity,
wind speed, surface pressure, downward shortwave radiation,
and downward longwave radiation) also constitute the cho-
sen model resolution for HTESSEL.

We used a process parameterization based on the default
configuration presented in the development branch CY47R1
of HTESSEL (nemk_CY47R1.0_v6b_cmflood_mpr). In ad-
dition to this default setup, we used MPR to estimate the six
soil parameters of the Mualem–van Genuchten model for the
hydraulic conductivity curve (Eq. 1) and soil moisture re-
tention curve (Eq. 2). These parameters were estimated di-
rectly on the SG dataset (Hengl et al., 2017) using the fol-
lowing TFs: categorical TF 1 based on lookup table val-
ues (HYPRES, 1997), continuous TF 2 (Zacharias and Wes-
solek, 2007) with the estimation of only the four parame-
ters of Eq. (2), and continuous TF 3 (Wösten et al., 2001).
Soil textural data were averaged over the soil column for
TF 1 and classified into 7 classes using the HYPRES soil
texture triangle (HYPRES, 1997; Wösten et al., 1999) with
some additions for organic soils. Finally, the dominant type
within a model grid cell was used. The exact parameters were
then derived from class-specific default values provided in
the lookup tables. TF 1 is used in HTESSEL as the default
option. The arithmetic mean was used to upscale the param-
eters to the model resolution, except for the vertical scaling
of Ks along the soil horizons, for which the harmonic mean
was used.

The HTESSEL model version CY47R1 was used and
modified to explicitly allow for the reading of spatially dis-
tributed model parameters. We used the default soil layering
of horizon boundaries at depths of 0.07, 0.28, 1.0, 2.0., and
2.89 m. Due to limitations in the HTESSEL solver for the
soil physics processes, we enforced vertically homogeneous
soil parameters.

The HTESSEL model was run for 8 years at a daily time
step from 1979 to 1986. We allowed the model to run for an
entire period and used the resulting state variables as initial
conditions for the final run. The final evaluation period cov-
ered the years 1979 to 1986. The 3-hourly simulation results
were aggregated to mean annual values.
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Appendix D: Templates for user-defined functions

Figure D1. Template for user-defined TFs as an abstract interface.

Figure D2. Template for user-defined upscale operators as an ab-
stract interface.
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Appendix E: Inventory of operators in transfer
functions and for upscaling

Table E1. Table of operators that can be specified in a string for the
property transfer_func in the configuration file mpr.nml. They
are directly parsed to the Fortran code.

Operator Type Description

+ binary operator –
- binary operator –
** binary operator –
* binary operator –
/ binary operator –
max binary operator –
min binary operator –
exp unary operator –
sqrt unary operator –
log10 unary operator –
log unary operator –
abs unary operator –
( delimiter –
) delimiter –
if conditional statement –
else conditional statement –
then conditional statement –
where conditional statement –
end conditional statement –
<= relation operator –
< relation operator –
>= relation operator –
> relation operator –
== relation operator –
.and. logic notation –
.or. logic notation –
.not. logic notation –
sin trigonometric function –
cos trigonometric function –
tan trigonometric function –
tanh trigonometric function –
acos trigonometric function –
asin trigonometric function –
atan trigonometric function –
atan2 trigonometric function –
cosh trigonometric function –
sinh trigonometric function –

Table E2. Table of operators that can be specified in a string for
the property upscale_ops in the configuration file mpr.nml. The
values x of the array with size n (with indices i) are passed to the
operator with weights w of the same size.

Operator Equation Description

p,p = 0
∏n
i=1x

wi
i

geometric mean

p,p ∈ R
(∑n

i=1wix
p
i

) 1
p power mean

min min {xi} minimum
max max {xi} maximum
sum

∑n
i=1xi sum

var
∑n
i=1wi(xi − x)

2 variance

std
√∑n

i=1wi(xi − x)
2 standard deviation

laf min{xj |j ∈ 1, . . ., |x| : largest area fraction
∀i : wi <= wj }

Code availability. The MPR software (Schweppe et al., 2021) is
publicly available and the code development can be found at https:
//git.ufz.de/chs/MPR/ (last access: 16 January 2022). The code is
published under the GNU GPLv3 license. The code can be com-
piled by any recent Fortran compiler supporting the Fortran2008
standard and needs the netcdf-fortran library. In order to au-
tomatically add TFs to the code with a preprocessing script, the
Python library f90nml (Ward et al., 2021) must be installed. The
documentation framework ford (MacMackin, 2018) is used to cre-
ate the documentation (Schweppe et al., 2021), which hosts a tuto-
rial, documentation, and extensive overview of the source code.

Data availability. We used the following third-party
datasets: SoilGrids1km (Hengl et al., 2014), originally
downloaded from: ftp://ftp.soilgrids.org/data/recent/, last
access: 25 July 2018, it now is partly available under
https://files.isric.org/soilgrids/former/2017-03-10/data/, last access:
16 January 2022 (https://doi.org/10.1371/journal.pone.0105992),
SoilGrids250m (Hengl et al., 2017), originally down-
loaded from: ftp://ftp.soilgrids.org/data/recent/, last ac-
cess: 25 July 2018, it now is partly available under
https://files.isric.org/soilgrids/former/2017-03-10/data/, last access:
16 January 2022 (https://doi.org/10.1371/journal.pone.0169748),
EU-SoilHydroGrids (Tóth et al., 2017), MODIS-IGBP (Friedl
et al., 2010), NLDAS-2 forcing dataset (Xia and NCEP/EMC,
2009), and the ERA5 forcing dataset (ECMWF, 2019,
https://doi.org/10.24381/cds.bd0915c6).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-859-2022-supplement.
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Wright, M. N., Geng, X., Bauer-Marschallinger, B., Gue-
vara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,

https://doi.org/10.5194/gmd-15-859-2022 Geosci. Model Dev., 15, 859–882, 2022

https://doi.org/10.1007/s10040-004-0404-7
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
https://doi.org/10.1002/2015WR017910
https://doi.org/10.1177/1094342005056120
https://gdal.org
https://doi.org/10.1029/WR020i006p00682
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1002/2016JD025097
https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/10.1029/2019WR026085
https://doi.org/10.1007/BF00939380
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#cell-boundaries
https://doi.org/10.24381/cds.bd0915c6
https://www.ecmwf.int/en/elibrary/19308-part-iv-physical-processes
https://www.ecmwf.int/en/elibrary/19308-part-iv-physical-processes
https://doi.org/10.1029/2002JD003296
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://doi.org/10.1002/essoar.10502385.1
https://doi.org/10.1002/hyp.3360090313
https://doi.org/10.3334/ORNLDAAC/968
https://doi.org/10.13031/2013.23637
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1016/S0098-1354(98)00191-4
https://doi.org/10.5194/hess-18-463-2014
https://doi.org/10.5194/gmd-11-3481-2018
https://doi.org/10.1371/journal.pone.0105992


880 R. Schweppe et al.: MPR 1.0: a stand-alone multiscale parameter regionalization tool

Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil informa-
tion based on machine learning, PLOS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.

Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivani-
dis, I.: A regional parameter estimation scheme for a
pan-European multi-basin model, J. Hydrol., 6, 90–111,
https://doi.org/10.1016/j.ejrh.2016.04.002, 2016.

HYPRES: European soil map texture classes, The James Hutton In-
stitute, available at: https://www.hutton.ac.uk/learning/ (last ac-
cess: 16 January 2022), 1997.

Imhoff, R. O., van Verseveld, W. J., van Osnabrugge, B., and
Weerts, A. H.: Scaling Point-Scale (Pedo)transfer Functions
to Seamless Large-Domain Parameter Estimates for High-
Resolution Distributed Hydrologic Modeling: An Example for
the Rhine River, Water Resour. Res., 56, e2019WR026807,
https://doi.org/10.1029/2019WR026807, 2020.

Jones, P. W.: A User’s Guide for SCRIP: A Spherical Coordinate
Remapping and Interpolation Package, Los Alamos National
Laboratory, available at: https://github.com/SCRIP-Project/
SCRIP/blob/master/SCRIP/doc/SCRIPusers.pdf (last access:
16 January 2022), 2010.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: Linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.

Klotz, D., Herrnegger, M., and Schulz, K.: Symbolic Re-
gression for the Estimation of Transfer Functions of Hy-
drological Models, Water Resour. Res., 53, 9402–9423,
https://doi.org/10.1002/2017WR021253, 2017.

Krinner, G., Viovy, N., Noblet-Ducoudré, N. d., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.:
A dynamic global vegetation model for studies of the cou-
pled atmosphere-biosphere system, Global Biogeochem. Cy., 19,
GB1015, https://doi.org/10.1029/2003GB002199, 2005.

Kumar, R., Livneh, B., and Samaniego, L.: Toward computation-
ally efficient large-scale hydrologic predictions with a multi-
scale regionalization scheme, Water Resour. Res., 49, 5700–
5714, https://doi.org/10.1002/wrcr.20431, 2013a.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of dis-
tributed hydrologic model parameterization on water fluxes at
multiple scales and locations, Water Resour. Res., 49, 360–379,
https://doi.org/10.1029/2012WR012195, 2013b.

Li, Y., Grimaldi, S., Pauwels, V. R. N., and Walker, J. P.: Hy-
drologic model calibration using remotely sensed soil mois-
ture and discharge measurements: The impact on predictions
at gauged and ungauged locations, J. Hydrol., 557, 897–909,
https://doi.org/10.1016/j.jhydrol.2018.01.013, 2018.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A sim-
ple hydrologically based model of land surface water and energy
fluxes for general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.

Livneh, B., Kumar, R., and Samaniego, L.: Influence of
soil textural properties on hydrologic fluxes in the Mis-
sissippi river basin, Hydrol. Process., 29, 4638–4655,
https://doi.org/10.1002/hyp.10601, 2015.

MDAL contributors: The MDAL Mesh Data Abstraction software
Library, available at: https://www.mdal.xyz/ (last access: 16 Jan-
uary 2022), 2020.

Ma, N., Niu, G.-Y., Xia, Y., Cai, X., Zhang, Y., Ma, Y., and
Fang, Y.: A Systematic Evaluation of Noah-MP in Simulating
Land-Atmosphere Energy, Water, and Carbon Exchanges Over
the Continental United States, J. Geophys. Res.-Atmos., 122,
12245–12268, https://doi.org/10.1002/2017JD027597, 2017.

MacMackin, C.: FORD, Zenodo [code],
https://doi.org/10.5281/zenodo.1422473, 2018.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb,
R. M., Payn, R. A., and LaFontaine, J. H.: PRMS-IV, the
Precipitation-Runoff Modeling System, Version 4, USGS Num-
bered Series, PRMS-IV, the Precipitation-Runoff Modeling Sys-
tem, Version 4, Vol. 6-B7, Techniques and Methods, Reston, VA:
U.S. Geological Survey, https://doi.org/10.3133/tm6B7, 2015.

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M.,
Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M.,
Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M.,
Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hoheneg-
ger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., Jungclaus,
J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D.,
Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel,
J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen,
H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M.,
Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschnei-
der, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch, J.-
S. v., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld,
S., Winkler, A., and Roeckner, E.: Developments in the MPI-
M Earth System Model version 1.2 (MPI-ESM1.2) and Its Re-
sponse to Increasing CO2, J. Adv. Model. Earth Syst., 11, 998–
1038, https://doi.org/10.1029/2018MS001400, 2019.

Merz, R., Tarasova, L., and Basso, S.: Parameter’s Controls
of Distributed Catchment Models—How Much Information is
in Conventional Catchment Descriptors?, Water Resour. Res.,
56, e2019WR026008, https://doi.org/10.1029/2019WR026008,
2020.

Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake,
J. C., Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo,
L., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Lettenmaier,
D. P., Marshall, C. H., Entin, J. K., Pan, M., Shi, W., Koren, V.,
Meng, J., Ramsay, B. H., and Bailey, A. A.: The multi-institu-
tion North American Land Data Assimilation System (NLDAS):
Utilizing multiple GCIP products and partners in a continen-
tal distributed hydrological modeling system, J. Geophys. Res.-
Atmos., 109, D07S90, https://doi.org/10.1029/2003JD003823,
2004.

Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W.,
Gutmann, E. D., Nijssen, B., Rakovec, O., and Samaniego,
L.: Towards seamless large-domain parameter estimation for
hydrologic models, Water Resour. Res., 53, 8020–8040,
https://doi.org/10.1002/2017WR020401, 2017.

Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and
Vereecken, H.: A global data set of soil hydraulic proper-
ties and sub-grid variability of soil water retention and hy-
draulic conductivity curves, Earth Syst. Sci. Data, 9, 529–543,
https://doi.org/10.5194/essd-9-529-2017, 2017.

NCAR: Noah-MP Version 1.6 (as implemented in WRFv3.6), avail-
able at: https://ral.ucar.edu/sites/default/files/public/ (last access:
16 January 2022), 2020.

Geosci. Model Dev., 15, 859–882, 2022 https://doi.org/10.5194/gmd-15-859-2022

https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.ejrh.2016.04.002
https://www.hutton.ac.uk/learning/natural-resource-datasets/hypres/european-soil-map-texture-classes
https://doi.org/10.1029/2019WR026807
https://github.com/SCRIP-Project/SCRIP/blob/master/SCRIP/doc/SCRIPusers.pdf
https://github.com/SCRIP-Project/SCRIP/blob/master/SCRIP/doc/SCRIPusers.pdf
https://doi.org/10.1029/2005WR004362
https://doi.org/10.1002/2017WR021253
https://doi.org/10.1029/2003GB002199
https://doi.org/10.1002/wrcr.20431
https://doi.org/10.1029/2012WR012195
https://doi.org/10.1016/j.jhydrol.2018.01.013
https://doi.org/10.1029/94JD00483
https://doi.org/10.1002/hyp.10601
https://www.mdal.xyz/
https://doi.org/10.1002/2017JD027597
https://doi.org/10.5281/zenodo.1422473
https://doi.org/1
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1029/2019WR026008
https://doi.org/10.1029/2003JD003823
https://doi.org/10.1002/2017WR020401
https://doi.org/10.5194/essd-9-529-2017
https://ral.ucar.edu/sites/default/files/public/product-tool/noah-multiparameterization-land-surface-model-noah-mp-lsm/HRLDAS-v3.6.tar.gz


R. Schweppe et al.: MPR 1.0: a stand-alone multiscale parameter regionalization tool 881

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek,
M. B., Barlage, M., Kumar, A., Manning, K., Niyogi,
D., Rosero, E., Tewari, M., and Xia, Y.: The commu-
nity Noah land surface model with multiparameterization op-
tions (Noah-MP): 1. Model description and evaluation with
local-scale measurements, J. Geophys. Res., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.

Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Moine, N. L.:
Spatial proximity, physical similarity, regression and ungaged
catchments: A comparison of regionalization approaches based
on 913 French catchments, Water Resour. Res., 44, W03413,
https://doi.org/10.1029/2007WR006240, 2008.

Pagliero, L., Bouraoui, F., Diels, J., Willems, P., and McIn-
tyre, N.: Investigating regionalization techniques for large-
scale hydrological modelling, J. Hydrol., 570, 220–235,
https://doi.org/10.1016/j.jhydrol.2018.12.071, 2019.

Patil, N. G. and Singh, S. K.: Pedotransfer Functions for Estimating
Soil Hydraulic Properties: A Review, Pedosphere, 26, 417–430,
https://doi.org/10.1016/S1002-0160(15)60054-6, 2016.

Pokhrel, P. and Gupta, H. V.: On the use of spatial regu-
larization strategies to improve calibration of distributed
watershed models, Water Resour. Res., 46, W01505,
https://doi.org/10.1029/2009wr008066, 2010.

Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving
the realism of hydrologic model functioning through multivari-
ate parameter estimation, Water Resour. Res., 52, 7779–7792,
https://doi.org/10.1002/2016WR019430, 2016.

Richards, L. A.: Capillary conduction of liquids
through porous mediums, Physics, 1, 318–333,
https://doi.org/10.1063/1.1745010, 1931.

Richardson, L. F.: Weather prediction by numerical process,
Cambridge, The University press, available at: http://archive.
org/details/weatherpredictio00richrich (last access: 16 Jan-
uary 2022), 1922.

Rojas-Serna, C., Lebecherel, L., Perrin, C., Andréassian, V., and
Oudin, L.: How should a rainfall-runoff model be parame-
terized in an almost ungauged catchment? A methodology
tested on 609 catchments, Water Resour. Res., 52, 4765–4784,
https://doi.org/10.1002/2015WR018549, 2016.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale pa-
rameter regionalization of a grid-based hydrologic model
at the mesoscale, Water Resour. Res., 46, W05523,
https://doi.org/10.1029/2008WR007327, 2010.

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wan-
ders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E. H.,
Warrach-Sagi, K., and Attinger, S.: Toward seamless hydrologic
predictions across spatial scales, Hydrol. Earth Syst. Sci., 21,
4323–4346, https://doi.org/10.5194/hess-21-4323-2017, 2017.

Samaniego, L., Kaluza, M., Kumar, R., Rakovec, O., Schüler,
L., Schweppe, R., Kumar Shreshta, P., Thober, S., and
Attinger, S.: mesoscale Hydrologic Model, Zenodo,
https://doi.org/10.5281/zenodo.3239055, 2019.

Saxe, S., Farmer, W., Driscoll, J., and Hogue, T. S.: Implications of
model selection: a comparison of publicly available, contermi-
nous US-extent hydrologic component estimates, Hydrol. Earth
Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-
2021, 2021.

Saxton, K. E. and Rawls, W. J.: Soil Water Characteris-
tic Estimates by Texture and Organic Matter for Hy-

drologic Solutions, Soil Sci. Soc. Am. J., 70, 1569,
https://doi.org/10.2136/sssaj2005.0117, 2006.

Schaake, J. C.: Introduction, in: Calibration of Water-
shed Models, American Geophysical Union (AGU), 1–7,
https://doi.org/10.1029/WS006p0001, 2003.

Schulzweida, U.: CDO User Guide, Zenodo,
https://doi.org/10.5281/zenodo.3539275, 2019.

Schweppe, R., Thober, S., Müller, S., Kelbling, M., Ku-
mar, R., Attinger, S., and Samaniego, L.: Multiscale Pa-
rameter Regionalization too – MPR v. 1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.4650513, 2021.

Shoarinezhad, V., Wieprecht, S., and Haun, S.: Comparison of Lo-
cal and Global Optimization Methods for Calibration of a 3D
Morphodynamic Model of a Curved Channel, Water, 12, 1333,
https://doi.org/10.3390/w12051333, 2020.

Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D.,
Park, S.-H., and Ringler, T. D.: A Multiscale Nonhydrostatic
Atmospheric Model Using Centroidal Voronoi Tesselations
and C-Grid Staggering, Mon. Weather Rev., 140, 3090–3105,
https://doi.org/10.1175/MWR-D-11-00215.1, 2012.

Staff, S. S. D.: Soil Survey Manual, no. 18 in United States De-
partment of Agriculture Handbook, U.S. Government Printing
Office, Washington, D.C, 1993.

Sykora, S.: Mathematical Means and Averages: Basic Properties,
Stan’s Library, https://doi.org/10.3247/sl3math09.001, 2009.

QGIS development team: QGIS, GitHub, available at: https://
github.com/qgis/QGIS (last access: 16 January 2022), 2020.

Thiemann, M., Trosset, M., Gupta, H., and Sorooshian,
S.: Bayesian recursive parameter estimation for hy-
drologic models, Water Resour. Res.h, 37, 2521–2535,
https://doi.org/10.1029/2000WR900405, 2001.

Tolson, B. A. and Shoemaker, C. A.: Dynamically dimen-
sioned search algorithm for computationally efficient water-
shed model calibration, Water Resour. Res., 43, W01413,
https://doi.org/10.1029/2005WR004723, 2007.

Troy, T. J., Wood, E. F., and Sheffield, J.: An effi-
cient calibration method for continental-scale land
surface modeling, Water Resour. Res., 44, W09411,
https://doi.org/10.1029/2007WR006513, 2008.

Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G.,
and Tóth, G.: New generation of hydraulic pedotransfer
functions for Europe, European J. Soil Sci., 66, 226–238,
https://doi.org/10.1111/ejss.12192, 2015.

Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hy-
draulic database of Europe at 250 m resolution, Hydrol. Process.,
31, 2662–2666, https://doi.org/10.1002/hyp.11203, 2017.

Ullrich, P. A. and Taylor, M. A.: Arbitrary-Order Conser-
vative and Consistent Remapping and a Theory of Lin-
ear Maps: Part I, Mon. Weather Rev., 143, 2419–2440,
https://doi.org/10.1175/MWR-D-14-00343.1, 2015.

Unidata UCAR: NetCDF User’s Guide, UCAR/Unidata Program
Center, https://doi.org/10.5065/D6H70CW6, 2020.

Service Center Agencies: Watershed Boundary Dataset, avail-
able at: http://datagateway.nrcs.usda.gov (last access: 16 January
2022), 2019.

Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny,
B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A.,
Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vander-
borght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias,

https://doi.org/10.5194/gmd-15-859-2022 Geosci. Model Dev., 15, 859–882, 2022

https://doi.org/10.1029/2010JD015139
https://doi.org/10.1029/2007WR006240
https://doi.org/10.1016/j.jhydrol.2018.12.071
https://doi.org/10.1016/S1002-0160(15)60054-6
https://doi.org/10.1029/2009wr008066
https://doi.org/10.1002/2016WR019430
https://doi.org/10.1063/1.1745010
http://archive.org/details/weatherpredictio00richrich
http://archive.org/details/weatherpredictio00richrich
https://doi.org/10.1002/2015WR018549
https://doi.org/10.1029/2008WR007327
https://doi.org/10.5194/hess-21-4323-2017
https://doi.org/10.5281/zenodo.3239055
https://doi.org/10.5194/hess-25-1529-2021
https://doi.org/10.5194/hess-25-1529-2021
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1029/WS006p0001
https://doi.org/10.5281/zenodo.3539275
https://doi.org/10.5281/zenodo.4650513
https://doi.org/10.3390/w12051333
https://doi.org/10.1175/MWR-D-11-00215.1
https://doi.org/10.3247/sl3math09.001
https://github.com/qgis/QGIS
https://github.com/qgis/QGIS
https://doi.org/10.1029/2000WR900405
https://doi.org/10.1029/2005WR004723
https://doi.org/10.1029/2007WR006513
https://doi.org/10.1111/ejss.12192
https://doi.org/10.1002/hyp.11203
https://doi.org/10.1175/MWR-D-14-00343.1
https://doi.org/10.5065/D6H70CW6
http://datagateway.nrcs.usda.gov


882 R. Schweppe et al.: MPR 1.0: a stand-alone multiscale parameter regionalization tool

S., Zhang, Y., and Vereecken, H.: Pedotransfer Functions in
Earth System Science: Challenges and Perspectives: PTFs in
Earth system science perspective, Rev. Geophys., 55, 1199–
1256, https://doi.org/10.1002/2017RG000581, 2017.

Vereecken, H., Maes, J., Feyen, J., and Darius, P.: Estimat-
ing the soil moisture retention characteristic from texture,
bulk density, and carbon content, Soil Sci., 148, 389–403,
https://doi.org/10.1097/00010694-198912000-00001, 1989.

Vereecken, H., Maes, J., and Feyen, J.: Estimating unsaturated hy-
draulic conductivity from easily measured soil properties, Soil
Sci., 149, 1–12, https://doi.org/10.1097/00010694-199001000-
00001, 1990.

Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Ver-
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