Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8453-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-8453-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8.1
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
now at: Ecologie des Forêts Méditerranéennes (URFM),
Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Avignon, France
Simon Munier
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Anthony Mucia
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Clément Albergel
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
now at: European Space Agency Climate Office, ECSAT, Harwell Campus, OX11 0FD Didcot, Oxfordshire, United Kingdom
Jean-Christophe Calvet
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Related authors
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data, 17, 1121–1152, https://doi.org/10.5194/essd-17-1121-2025, https://doi.org/10.5194/essd-17-1121-2025, 2025
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three principal GHG fluxes at the national level. Compared to our previous study, new satellite-based CO2 inversions were included and an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Alexis Jeantet, Jean-Pierre Vergnes, Simon Munier, and Florence Habets
EGUsphere, https://doi.org/10.5194/egusphere-2025-93, https://doi.org/10.5194/egusphere-2025-93, 2025
Short summary
Short summary
The AquiFR hydrogeological modelling plateform is forced by 36 climate projections in order to simulate future groundwater levels over France. The results show significant scatters between regional climate models and RCPs. Overall, a rise in groundwater levels, affecting most of the study area, is the dominant signal. Four storylines have been selected to to illustrate the impacts of worst-case scenarios and help decision-makers to adopt sustainable groundwater management policies.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Malak Sadki, Gaëtan Noual, Simon Munier, Vanessa Pedinotti, Kaushlendra Verma, Clément Albergel, Sylvain Biancamaria, and Alice Andral
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-328, https://doi.org/10.5194/hess-2024-328, 2024
Preprint under review for HESS
Short summary
Short summary
This study explores how 20 years of remote-sensed discharge data from the ESA CCI improve large-scale hydrological models, CTRIP and MGB, through data assimilation. Using an EnKF framework across the Niger and Congo basins, it shows how assimilating denser temporal discharge data reduces biases and improves flow variability, enhancing accuracy. These findings underscore the role of long-term discharge data in refining models for climate assessments, water management, and forecasting.
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024, https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Short summary
Overestimated root zone soil moisture (RZSM) based on land surface models (LSMs) is attributed to overestimated precipitation and an underestimated ratio of transpiration to total evapotranspiration and performs better in the wet season. Underestimated SMOS L3 surface SM triggers the underestimated SMOS L4 RZSM, which performs better in the dry season due to the attenuated radiation in the wet season. LSMs should reduce and increase the frequency of wet and dry soil moisture, respectively.
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024, https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
En Liu, Yonghua Zhu, Jean-christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-33, https://doi.org/10.5194/hess-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Among the 8 considered products, GLDAS_CLSM product performs best. All RZSM products overestimate the in situ measurements which attributes to a wet bias of air temperature, precipitation amount and frequency except the underestimation of SMOS L4 RZSM related to the underestimation of SMOS L3 SSM. The higher R between SMPA L4 and MERRA-2 was attributed to they both use CLSM and meteorological forcing from GEOS-5 where precipitation was corrected with CPCU precipitation product.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022, https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
Short summary
Climate data records of surface soil moisture, vegetation optical depth, and land surface temperature can be derived from passive microwave observations. The ability of these datasets to properly detect anomalies and extremes is very valuable in climate research and can especially help to improve our insight in complex regions where the current climate reanalysis datasets reach their limitations. Here, we present a case study over the Okavango Delta, where we focus on inter-annual variability.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Simon Munier and Bertrand Decharme
Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, https://doi.org/10.5194/essd-14-2239-2022, 2022
Short summary
Short summary
This paper presents a new global-scale river network at 1/12°, generated automatically and assessed over the 69 largest basins of the world. A set of hydro-geomorphological parameters are derived at the same spatial resolution, including a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The dataset may be useful for hydrology modelling or climate studies.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci., 25, 1425–1446, https://doi.org/10.5194/hess-25-1425-2021, https://doi.org/10.5194/hess-25-1425-2021, 2021
Short summary
Short summary
The risk of flash flood is of growing importance for populations, particularly in the Mediterranean area in the context of a changing climate. The representation of soil processes in models is a key factor for flash flood simulation. The importance of the various methods for soil moisture estimation are highlighted in this work. Local measurements from the field as well as data derived from satellite imagery can be used to assess the performance of model outputs.
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev., 14, 1595–1614, https://doi.org/10.5194/gmd-14-1595-2021, https://doi.org/10.5194/gmd-14-1595-2021, 2021
Short summary
Short summary
In the mountains, the combination of large model error and observation sparseness is a challenge for data assimilation. Here, we develop two variants of the particle filter (PF) in order to propagate the information content of observations into unobserved areas. By adjusting observation errors or exploiting background correlation patterns, we demonstrate the potential for partial observations of snow depth and surface reflectance to improve model accuracy with the PF in an idealised setting.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Cited articles
Adegoke, J. O., Pielke, R. A., Eastman, J., Mahmood, R., and Hubbard, K. G.:
Impact of Irrigation on Midsummer Surface Fluxes and Temperature under Dry
Synoptic Conditions: A Regional Atmospheric Model Study of the U.S. High
Plains, Mon. Weather Rev., 131, 556–564,
https://doi.org/10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2, 2003.
Albergel, C., Dutra, E., Bonan, B., Zheng, Y., Munier, S., Balsamo, G., de Rosnay, P., Munoz-Sabater, J., and Calvet, J.-C.: Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation, Remote Sens., 11, 520, https://doi.org/10.3390/rs11050520, 2019.
Al-Yaari, A., Ducharne, A., Tafasca, S., Mizuochi, H., and Cheruy, F.: Influence
of irrigation on the bias between ORCHIDEE and FLUXCOM evapotranspiration
products, 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, 6552–6555, https://doi.org/10.1109/IGARSS47720.2021.9554734, 2021.
AQUASTAT and FAO: Country Fact Sheet, United States of America, http://www.fao.org/nr/water/aquastat/data/cf/readPdf.html?f=USA-CF_eng.pdf (last access: 15 November 2022), 2019.
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P.,
and Smets, B.: GEOV1: LAI and FAPAR essential climate variables and FCOVER
global time series capitalizing over existing products. Part1: Principles of
development and production, Remote Sens. Environ., 137, 299–309,
https://doi.org/10.1016/j.rse.2012.12.027, 2013.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke,
J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and
irrigation water supply during the 20th century, Water Resour. Res., 47, W03509,
https://doi.org/10.1029/2009WR008929, 2011.
Boedhram, N., Arkebauer, T. J., and Batchelor, W. D.: Season-long
characterization of vertical distribution of leaf area in corn, Agron. J.,
93, 1235–1242, https://doi.org/10.2134/agronj2001.1235, 2001.
Bonan, B., Albergel, C., Zheng, Y., Barbu, A. L., Fairbairn, D., Munier, S., and Calvet, J.-C.: An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the Land Data Assimilation System LDAS-Monde: application over the Euro-Mediterranean region, Hydrol. Earth Syst. Sci., 24, 325–347, https://doi.org/10.5194/hess-24-325-2020, 2020.
Bonnemort, C., Bouthier, A., Deumier, J.-M., and Specty, R.: Conduire
l'irrigation avec Irritel ; intérêts et limites, La
Météorologie, 14, 36–43, https://doi.org/10.4267/2042/51182, 1996.
Boone, A., Bellvert, J., Best, M., Brooke, J., Canut-Rocafort, G., Cuxart, J.,
Hartogensis, O., Le Moigne, P., Miró, J. R., Polcher, J., Price, J., Quintana
Seguí, P., and Wooster, M.: Updates on the international Land Surface
Interactions with the Atmosphere over the Iberian Semi-Arid Environment
(LIAISE) Field Campaign, GEWEX News, 31, 16–21, 2021.
Bruinsma, J.: The resource outlook to 2050: By how much do land, water use and crop yields need to Increase by 2050?, FAO Expert meeting on How to Feed the World in 2050, 24–26 June 2009, Rome, Italy, https://www.fsnnetwork.org/sites/default/files/the_resource_outlook_to_2050by_how_much_do_land_water_and_crop_yields_need_to_increase_by_2050_.pdf (last access: November 2022), 2009.
Calvet, J.-C. and Champeaux J.-L.: L'apport de la télédétection
spatiale à la modélisation des surfaces continentales, La
Météorologie, 108, 52–58,
https://doi.org/10.37053/lameteorologie-2020-0016, 2020.
Calvet, J.-C., Noilhan, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne,
M., Olioso, A., and Wigneron, J.-P.: An interactive vegetation SVAT model
tested against data from six contrasting sites, Agric. For. Meteorol.,
92, 73–95, https://doi.org/10.1016/S0168-1923(98)00091-4, 1998.
Calvet, J.-C., Gibelin, A.-L., Roujean, J.-L., Martin, E., Le Moigne, P., Douville, H., and Noilhan, J.: Past and future scenarios of the effect of carbon dioxide on plant growth and transpiration for three vegetation types of southwestern France, Atmos. Chem. Phys., 8, 397–406, https://doi.org/10.5194/acp-8-397-2008, 2008.
Carrillo-Guerrero, Y., Glenn, E. P., and Hinojosa-Huerta, O.: Water budget
for agricultural and aquatic ecosystems in the delta of the Colorado River,
Mexico: Implications for obtaining water for the environment, Ecol. Eng.,
59, 41–51, https://doi.org/10.1016/j.ecoleng.2013.04.047, 2013.
Chen, L.: Impacts of climate change on wind resources over North America
based on NA-CORDEX, Renewable Energy, 153, 1428–1438,
https://doi.org/10.1016/j.renene.2020.02.090, 2020.
Chukalla, A. D., Krol, M. S., and Hoekstra, A. Y.: Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching, Hydrol. Earth Syst. Sci., 19, 4877–4891, https://doi.org/10.5194/hess-19-4877-2015, 2015.
Colaizzi, P. D., Gowda, P. H., Marek, T. H., and Porter, D. O.: Irrigation in
the Texas High Plains: a brief history and potential reductions in demand,
Irrig. Drain., 58, 257–274, https://doi.org/10.1002/ird.418, 2009.
Copernicus: CGLS LAI, Copernicus, Copernicus [data set], https://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Browse;Root=512260;Collection=1000083;Time=NORMAL,NORMAL,-1,,,-1,, (last
access: 15 November 2022), 2020.
Copernicus: CGLS hourly LST, Copernicus, Copernicus [data set], https://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Browse;Root=520752;Collection=1000300;Time=NORMAL,NORMAL,-1,,,-1,, (last access: 15 November 2022), 2019.
CNRM: SURFEX code, CNRM, http://www.umr-cnrm.fr/surfex/data/OPEN-SURFEX/open_surfex_v8_1_20210914.tar.gz (last access: 15 November 2022), 2016.
DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., and
Robinson, D.: Evidence of enhanced precipitation due to irrigation over the
Great Plains of the United States, J. Geophys. Res., 115, D15115,
https://doi.org/10.1029/2010JD013892, 2010.
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J., Alias, A.,
Saint-Martin, D., Séférian, R., Sénési, S., and Voldoire, A.:
Recent Changes in the ISBA-CTRIP Land Surface System for Use in the CNRM-CM6
Climate Model and in Global Off-Line Hydrological Applications, J. Adv.
Model. Earth Syst., 11, 1207–1252, https://doi.org/10.1029/2018MS001545,
2019.
Delire, C., Séférian R., Decharme B., Alkama R., Calvet J.-C.,
Carrer D., Gibelin A.-L., Joetzjer E., Morel X., Rocher M., and Tzanos, D.:
The global land carbon cycle simulated with ISBA-CTRIP: impro-vements over
the last decade, J. Adv. Model. Earth Sy., 12, e2019MS001886,
https://doi.org/10.1029/2019MS001886, 2020.
de Vrese, P., Hagemann, S., and Claussen, M.: Asian irrigation, African rain:
Remote impacts of irrigation, Geophys. Res. Lett., 43, 3737–3745,
https://doi.org/10.1002/2016GL068146, 2016.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A.,
Rodell, M., Strassberg, G., and Scanlon, B. R.: Impact of water withdrawals
from groundwater and surface water on continental water storage variations,
J. Geodyn., 59–60, 143–156, https://doi.org/10.1016/j.jog.2011.05.001,
2012.
Douglas, E. M., Niyogi, D., Frolking, S., Yeluripati, J. B., Pielke, R. A.,
Niyogi, N., Vörösmarty, C. J., and Mohanty, U. C.: Changes in
moisture and energy fluxes due to agricultural land use and irrigation in
the Indian Monsoon Belt, Geophys. Res. Lett., 33, L14403,
https://doi.org/10.1029/2006GL026550, 2006.
Druel, A.: ArseneD/OPEN_SURFEX_V81_IRR: SURFEX_v8.1_IRR_v1.0 (SURFEX_v8.1_IRR_v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5718063, 2021.
Druel, A.: IrrigationMapV0, initial files and scripts to reproduce the simulation of Druel et al., 2022, Zenodo [data set], https://doi.org/10.5281/zenodo.7221291, 2022.
Evans, R. G. and Sadler, E. J.: Methods and technologies to improve efficiency of water use, Water Resour. Res., 44, W00E04, https://doi.org/10.1029/2007WR006200, 2008.
FAO: Food and Agriculture Organization of the United Nations: Water
withdrawal and pressure on water resources, http://www.fao.org/nr/water/aquastat/infographics/Withdrawal_eng.pdf (last access: 15 November 2022), 2014.
Felfelani, F., Lawrence, D. M., and Pokhrel, Y.: Representing intercell
lateral groundwater flow and aquifer pumping in the community land model,
Water Resour. Res., 56, e2020WR027531,
https://doi.org/10.1029/2020WR027531, 2020.
Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J. and Mastrandrea, M.
D. (Eds.): Climate Change 2014 Impacts, Adaptation, and Vulnerability:
Working Group II Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, 2014.
Fischer, C., Montmerle, T., Berre, L., Auger, L., and Ştefănescu, S.
E.: An overview of the variational assimilation in the ALADIN/France
numerical weather-prediction system, Q. J. Roy. Meteor. Soc., 131,
3477–3492, https://doi.org/10.1256/qj.05.115, 2005.
FluxCom: Carbon fluxes, FluxCom [data set], https://www.fluxcom.org/, last access: 15 November 2022.
Fraiture, C. de, Wichelns, D., Rockström, J., Kemp-Benedict, E.,
Eriyagama, N., Gordon, L. J., Hanjra, M. A., Hoogeveen, J., Huber-Lee, A.,
and Karlberg, L.: Looking ahead to 2050: scenarios of alternative investment
approaches, in: Water for food, water for life: a
Comprehensive Assessment of Water Management in Agriculture, edited by: Molden, D.,
International Water Management Institute (IWMI), London, UK, Earthscan,
Colombo, Sri Lanka, 91–145,
https://hdl.handle.net/10568/36869 (last access: 15 November 2022.), 2007.
Freitas, S. C., Trigo, I. F., Macedo, J., Barroso, C., Silva, R., and
Perdigão, R.: Land surface temperature from multiple geostationary
satellites, Int. J. Remote Sens., 34, 3051–3068,
https://doi.org/10.1080/01431161.2012.716925, 2013.
Gibelin, A.-L., Calvet, J.-C., Roujean, J.-L., Jarlan, L., and Los, S. O.:
Ability of the land surface model ISBA-A-gs to simulate leaf area index at
the global scale: Comparison with satellites products, J. Geophys. Res.,
111, D18102, https://doi.org/10.1029/2005JD006691, 2006.
Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto,
P., Udall, B., Wheeler, S. A., Wang, Y., Garrick, D., and Allen, R. G.: The
paradox of irrigation efficiency, Science, 361, 748–750,
https://doi.org/10.1126/science.aat9314, 2018.
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic impacts on
continental surface water fluxes, Geophys. Res. Lett., 33, L08406,
https://doi.org/10.1029/2006GL026047, 2006.
Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T.: An estimation of global
virtual water flow and sources of water withdrawal for major crops and
livestock products using a global hydrological model, J. Hydrol., 384,
232–244, https://doi.org/10.1016/j.jhydrol.2009.09.028, 2010.
Harding, R. J., Blyth, E. M., Tuinenburg, O. A., and Wiltshire, A.: Land
atmosphere feedbacks and their role in the water resources of the Ganges
basin, Sci. Total Environ., 468–469, S85–S92,
https://doi.org/10.1016/j.scitotenv.2013.03.016, 2013.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 730, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hoekstra, A. Y. and Mekonnen, M. M.:
The water footprint of humanity, P. Natl. Acad. Sci. USA, 109, 3232–3237,
https://doi.org/10.1073/pnas.1109936109, 2012.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, 2015.
Jiang, L., Ma, E., and Deng, X.: Impacts of Irrigation on the Heat Fluxes and
Near-Surface Temperature in an Inland Irrigation Area of Northern China,
Energies, 7, 1300–1317, https://doi.org/10.3390/en7031300, 2014.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P.,
Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly
global land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.
Khan, S. and Abbas, A.: Upscaling water savings from farm to irrigation
system level using GIS-based agro-hydrological modelling, Irrig. Drain.,
56, 29–42, https://doi.org/10.1002/ird.284, 2007.
Koech, R. and Langat, P.: Improving Irrigation Water Use Efficiency: A
Review of Advances, Challenges and Opportunities in the Australian Context,
Water, 10, 1771, https://doi.org/10.3390/w10121771, 2018.
Kueppers, L. M., Snyder, M. A., and Sloan, L. C.: Irrigation cooling effect:
Regional climate forcing by land-use change, Geophys. Res. Lett., 34,
L03703, https://doi.org/10.1029/2006GL028679, 2007.
Lawston, P. M., Santanello, J. A., Zaitchik, B. F., and Rodell, M.: Impact of
Irrigation Methods on Land Surface Model Spinup and Initialization of WRF
Forecasts, J. Hydrometeorol., 16, 1135–1154,
https://doi.org/10.1175/JHM-D-14-0203.1, 2015.
Le Moigne, P., Albergel, C., Belamari, S., Boone, A., Brun, E., Calvet, J.-C., Decharme, B.,Dumont, M., Faroux, S., Gibelin, A.-L., Giordani, H., Lafont, S., Lebeaupin, C., Mahfouf, J.-F., Martin, E., Masson, V., Mironov, D., Morin, S., Noilhan, J., Tulet, P., Van Den Hurk, B., and Vionnet, V.: SURFEX scientific documentation – V8.1, Sci. Doc. –
SURFEX, http://www.umr-cnrm.fr/surfex/spip.php?rubrique11 (last access: 15 November 2022), 2018.
Leng, G., Leung, L. R., and Huang, M.: Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model, J. Adv. Model. Earth Sy., 9, 1665–1683, https://doi.org/10.1002/2016MS000885, 2017.
Lobell, D. B., Bonfils, C. J., Kueppers, L. M., and Snyder, M. A.: Irrigation
cooling effect on temperature and heat index extremes, Geophys. Res. Lett.,
35, L09705, https://doi.org/10.1029/2008GL034145, 2008.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Meier, J., Zabel, F., and Mauser, W.: A global approach to estimate irrigated areas – a comparison between different data and statistics, Hydrol. Earth Syst. Sci., 22, 1119–1133, https://doi.org/10.5194/hess-22-1119-2018, 2018a.
Meier, J., Zabel, F., and Mauser, W.: Global Irrigated Areas, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.884744, 2018b.
Moore, N. and Rojstaczer, S.: Irrigation's influence on precipitation: Texas High Plains, U.S.A., Geophys. Res. Lett., 29, 1755, https://doi.org/10.1029/2002GL014940, 2002.
Mucia, A., Bonan, B., Zheng, Y., Albergel, C., and Calvet, J.-C.: From
monitoring to forecasting land surface conditions using a land data
assimilation system: Application over the contiguous United States, Remote
Sens., 12, 12, https://doi.org/10.3390/rs12122020, 2020.
Munier, S. and Decharme, B.: River network and hydro-geomorphological parameters at ∘ resolution for global hydrological and climate studies, Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, 2022.
Napoly, A., Boone, A., Samuelsson, P., Gollvik, S., Martin, E., Seferian, R., Carrer, D., Decharme, B., and Jarlan, L.: The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 – Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites, Geosci. Model Dev., 10, 1621–1644, https://doi.org/10.5194/gmd-10-1621-2017, 2017.
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface
Processes for Meteorological Models, Mon. Weather Rev., 117, 536–549,
https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989.
Ozdogan, M., Rodell, M., Beaudoing, H. K., and Toll, D. L.: Simulating the
Effects of Irrigation over the United States in a Land Surface Model Based
on Satellite-Derived Agricultural Data, J. Hydrometeorol., 11, 171–184,
https://doi.org/10.1175/2009JHM1116.1, 2010.
Perry, C.: Efficient irrigation; Inefficient communication; Flawed
recommendations, Irrig. Drain., 56, 367–378, 2007.
Perry, C., Steduto, P., Allen, R. G., and Burt, C. M.: Increasing
productivity in irrigated agriculture: Agronomic constraints and
hydrological realities, Agr. Water Manage., 96, 1517–1524, 2009.
Perry, C., Steduto, P., and Karejeh, F.: Does Improved Irrigation Technology
Save Water? A Review of the Evidence, Food and Agriculture Organization,
Cairo, Egypt, ISBN 978-92-5-109774-8, 2017.
Pfeiffer, L. and Lin, C.-Y. C.: Does efficient irrigation technology lead to
reduced groundwater extraction? Empirical evidence, J. Environ. Econ.
Manag., 67, 189–208, https://doi.org/10.1016/j.jeem.2013.12.002, 2014.
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu,
H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang,
T., and Fang, J.: The impacts of climate change on water resources and
agriculture in China, Nature, 467, 43–51,
https://doi.org/10.1038/nature09364, 2010.
Puma, M. J. and Cook, B. I.: Effects of irrigation on global climate during
the 20th century, J. Geophys. Res., 115, D16120,
https://doi.org/10.1029/2010JD014122, 2010.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates
of groundwater depletion in India, Nature, 460, 999–1002,
https://doi.org/10.1038/nature08238, 2009.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, W09405, https://doi.org/10.1029/2007WR006331, 2008.
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., and Helkowski, J. H.:
Effects of global irrigation on the near-surface climate, Clim. Dynam.,
33, 159–175, https://doi.org/10.1007/s00382-008-0445-z, 2009.
Saeed, F., Hagemann, S., and Jacob, D.: Impact of irrigation on the South
Asian summer monsoon, Geophys. Res. Lett., 36, L20711,
https://doi.org/10.1029/2009GL040625, 2009.
Shukla, S. P., Puma, M. J., and Cook, B. I.: The response of the South Asian
Summer Monsoon circulation to intensified irrigation in global climate model
simulations, Clim. Dynam., 42, 21–36,
https://doi.org/10.1007/s00382-013-1786-9, 2014.
Siebert, S. and Döll, P.: Quantifying blue and green virtual water
contents in global crop production as well as potential production losses
without irrigation, J. Hydrol., 384, 198–217,
https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010.
Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated land from 1900 to 2005, Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, 2015.
Sorooshian, S., Li, J., Hsu, K., and Gao, X.: Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California's Central Valley agricultural regions, J. Geophys. Res.-Atmos., 117, D06107, https://doi.org/10.1029/2011JD016978, 2012.
Suyker, A. E. and Verma, S. B.: Evapotranspiration of irrigated and rainfed
maize–soybean cropping systems, Agric. For. Meteorol., 149, 443–452,
https://doi.org/10.1016/j.agrformet.2008.09.010, 2009.
Szilagyi, J. and Franz, T. E.: Anthropogenic hydrometeorological changes at a
regional scale: observed irrigation–precipitation feedback (1979–2015) in
Nebraska, USA, Sustain. Water Resour. Manag. 6, 1,
https://doi.org/10.1007/s40899-020-00368-w, 2020.
Tang, Q., Oki, T., Kanae, S., and Hu, H.: Hydrological Cycles Change in the
Yellow River Basin during the Last Half of the Twentieth Century, J. Climate,
21, 1790–1806, https://doi.org/10.1175/2007JCLI1854.1, 2008.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
UNDESA: World population prospects 2022: Summary of results, UN DESA/POP/2022/TR/NO. 3, https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf, last access: 15 November 2022.
USDA and NASS: Field Crops, Usual Planting and Harvesting Dates, United
States Department of Agriculture – National Agricultural Statistics Service, https://downloads.usda.library.cornell.edu/usda-esmis/files/vm40xr56k/dv13zw65p/w9505297d/planting-10-29-2010.pdf
(last access: 15 November 2022), 2010.
USGS: Water Use Data for Nebraska, USGS [data set], https://waterdata.usgs.gov/ne/nwis/wu (last access: 15 November 2022), 2018.
Verburg, P. H., Dearing, J. A., Dyke, J. G., van der Leeuw, S., Seitzinger,
S., Steffen, W., and Syvitski, J.: Methods and approaches to modelling the
Anthropocene, Glob. Environ. Change, 39, 328–340,
https://doi.org/10.1016/j.gloenvcha.2015.08.007, 2016.
Voirin-Morel, S.: Modélisation distribuée des flux d'eau et d'énergie et des débits à l'échelle régionale du bassin Adour-Garonne, PhD Thesis, 292 pp., Université de Toulouse, https://www.theses.fr/2003TOU30047 (last access: 15 November 2022), 2003.
Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P., Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.: SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales, Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, 2017.
Wortmann, C. S., Klein, R. N., and Shapiro, C. A.: Harvesting crop residues, University of Nebraska-Lincoln, Institute of Agriculture and Natural Resouces, G1846, NebGuide Series, 4 pp., https://extensionpubs.unl.edu/publication/9000016365924/harvesting-crop-residues/ (last access: 15 November 2022), 2012.
Yin, Z., Wang, X. H., Ottlé, C., Zhou, F., Guimberteau, M., Polcher, J.,
Peng, S. S., Piao, S. L., Li, L., Bo, Y., Chen, X. L., Zhou, X. D., Kim, H.,
and Ciais, P.: Improvement of the irrigation scheme in the ORCHIDEE land surface
model and impacts of irrigation on regional water budgets over China, J.
Adv. Model. Earth Syst., 12, 1–20, https://doi.org/10.1029/2019MS001770,
2020.
Zaitchik, B. F., Evans, J., and Smith, R. B.: MODIS-Derived Boundary
Conditions for a Mesoscale Climate Model: Application to Irrigated
Agriculture in the Euphrates Basin, Mon. Weather Rev., 133, 1727–1743,
https://doi.org/10.1175/MWR2947.1, 2005.
Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C., Hou, P., Xue, J.,
Chen, J., Zhang, W., Liu, W., Wang, K., and Li, S.: Using irrigation intervals to
optimize water-use efficiency and maize yield in Xinjiang, northwest China,
The Crop J., 7, 322–334, https://doi.org/10.1016/j.cj.2018.10.008, 2019.
Zhang, Z., Barlage, M., Chen, F., Li, Y., Helgason, W., Xu, X., Liu, X., and
Li, Z.: Joint modeling of crop and irrigation in the central United States using
the Noah-MP land surface model, J. Adv. Model. Earth
Sy., 12, e2020MS002159, https://doi.org/10.1029/2020MS002159, 2020.
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Crop phenology and irrigation is implemented into a land surface model able to work at a global...
Special issue