Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8325-2022
https://doi.org/10.5194/gmd-15-8325-2022
Development and technical paper
 | 
18 Nov 2022
Development and technical paper |  | 18 Nov 2022

A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF

Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast

Related authors

Comparative Study of Strongly and Weakly Coupled Soil Moisture Data Assimilation with a Global Coupled Land-Atmosphere Model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
EGUsphere, https://doi.org/10.5194/egusphere-2023-887,https://doi.org/10.5194/egusphere-2023-887, 2023
Short summary
Reducing manipulations in control simulation experiment based on instability vectors with Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2023-2,https://doi.org/10.5194/npg-2023-2, 2023
Revised manuscript accepted for NPG
Short summary

Related subject area

Atmospheric sciences
Emulating aerosol optics with randomly generated neural networks
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023,https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023,https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Comparison of ozone formation attribution techniques in the northeastern United States
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023,https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023,https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023,https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary

Cited articles

Acevedo, W., Fallah, B., Reich, S., and Cubasch, U.: Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model, Clim. Past, 13, 545–557, https://doi.org/10.5194/cp-13-545-2017, 2017. 
Ades, M. and van Leeuwen, P. J.: An exploration of the equivalent weights particle filter, Q. J. Roy. Meteor. Soc., 139, 820–840, https://doi.org/10.1002/qj.1995, 2013. 
Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle filter in a high-dimensional system, Q. J. Roy. Meteor. Soc., 141, 484–503, https://doi.org/10.1002/qj.2370, 2015. 
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. 
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. 
Download
Short summary
Data assimilation plays an important part in numerical weather prediction (NWP) in terms of combining forecasted states and observations. While data assimilation methods in NWP usually assume the Gaussian error distribution, some variables in the atmosphere, such as precipitation, are known to have non-Gaussian error statistics. This study extended a widely used ensemble data assimilation algorithm to enable the assimilation of more non-Gaussian observations.