Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-815-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-815-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285)
Institute of Meteorology and Climate Research-Atmospheric
Environmental Research, Karlsruhe Institute of Technology, 82467
Garmisch-Partenkirchen, Germany
Stefan Olin
Department of Physical Geography and Ecosystems Science, Lund
University, 22362 Lund, Sweden
Peter Anthoni
Institute of Meteorology and Climate Research-Atmospheric
Environmental Research, Karlsruhe Institute of Technology, 82467
Garmisch-Partenkirchen, Germany
Sam S. Rabin
Institute of Meteorology and Climate Research-Atmospheric
Environmental Research, Karlsruhe Institute of Technology, 82467
Garmisch-Partenkirchen, Germany
Anita D. Bayer
Institute of Meteorology and Climate Research-Atmospheric
Environmental Research, Karlsruhe Institute of Technology, 82467
Garmisch-Partenkirchen, Germany
Sylvia S. Nyawira
International Center for Tropical Agriculture (CIAT), ICIPE Duduville Campus, P.O. Box 823-00621, Nairobi, Kenya
Almut Arneth
Institute of Meteorology and Climate Research-Atmospheric
Environmental Research, Karlsruhe Institute of Technology, 82467
Garmisch-Partenkirchen, Germany
Institute of Geography and Geoecology, Karlsruhe Institute of
Technology, 76131 Karlsruhe, Germany
Related authors
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025, https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025, https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
Short summary
We developed fast machine learning models to predict forest regrowth and carbon dynamics under climate change. These models mimic the outputs of a complex vegetation model but run 95 % faster, enabling global analyses and supporting climate solutions in large modeling frameworks such as LandSyMM.
Jette Elena Stoebke, David Wårlind, Stefan Olin, Annemarie Eckes-Shephard, Bogdan Brzeziecki, Mikko Peltoniemi, and Thomas A. M. Pugh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2995, https://doi.org/10.5194/egusphere-2025-2995, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Forests are shaped by how trees compete for resources like sunlight. We improved a widely used vegetation model to better capture how light filters through the forest canopy, especially after tree death or harvesting. By assigning trees explicit positions, the model captures forest structure and change more realistically. This advances our understanding of tree competition and forest responses to management, providing a better tool to predict future forest dynamics.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025, https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Dmitry Otryakhin, David Martín Belda, and Almut Arneth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1401, https://doi.org/10.5194/egusphere-2025-1401, 2025
Short summary
Short summary
We developed a methodology for comparison of simulation results by a dynamic global vegetation model (DGVM). Using this methodology, we reveal systematic differences between high- and low-resolution DGVM simulations caused by under-representation of climate variability in the low-resolution data and poor representation of shore lines and inland water bodies. In a study area covering European Union, the differences in aggregated output variables were found to be 2 %–10 %.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Prashant Paudel, Stefan Olin, Mark Tjoelker, Mikael Pontarp, Daniel Metcalfe, and Benjamin Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3977, https://doi.org/10.5194/egusphere-2024-3977, 2025
Short summary
Short summary
Ecological processes respond to changes in rainfall conditions. Competition and stress created by water availability are two primary components at two ends of the rainfall gradient. In wetter areas, plants compete for resources, while in drier regions, stress limits growth. The complex interaction between plant characters and their response to growth conditions governs ecosystem processes. These findings can be used to understand how future rainfall changes could impact ecosystems.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3784, https://doi.org/10.5194/egusphere-2024-3784, 2025
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Jens Krause, Peter Anthoni, Mike Harfoot, Moritz Kupisch, and Almut Arneth
EGUsphere, https://doi.org/10.5194/egusphere-2024-1646, https://doi.org/10.5194/egusphere-2024-1646, 2024
Short summary
Short summary
While animal biodiversity is facing a global crisis as more and more species are becoming endangered or extinct, the role of animals for the functioning of ecosystems is still not fully understood. We contribute to bridging this gap by coupling a animal population model with a vegetation and thus enable future research in this topic.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-98, https://doi.org/10.5194/essd-2024-98, 2024
Revised manuscript not accepted
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Sian Kou-Giesbrecht, Vivek K. Arora, Christian Seiler, Almut Arneth, Stefanie Falk, Atul K. Jain, Fortunat Joos, Daniel Kennedy, Jürgen Knauer, Stephen Sitch, Michael O'Sullivan, Naiqing Pan, Qing Sun, Hanqin Tian, Nicolas Vuichard, and Sönke Zaehle
Earth Syst. Dynam., 14, 767–795, https://doi.org/10.5194/esd-14-767-2023, https://doi.org/10.5194/esd-14-767-2023, 2023
Short summary
Short summary
Nitrogen (N) is an essential limiting nutrient to terrestrial carbon (C) sequestration. We evaluate N cycling in an ensemble of terrestrial biosphere models. We find that variability in N processes across models is large. Models tended to overestimate C storage per unit N in vegetation and soil, which could have consequences for projecting the future terrestrial C sink. However, N cycling measurements are highly uncertain, and more are necessary to guide the development of N cycling in models.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Adrian Gustafson, Paul A. Miller, Robert G. Björk, Stefan Olin, and Benjamin Smith
Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021, https://doi.org/10.5194/bg-18-6329-2021, 2021
Short summary
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Anita D. Bayer, Richard Fuchs, Reinhard Mey, Andreas Krause, Peter H. Verburg, Peter Anthoni, and Almut Arneth
Earth Syst. Dynam., 12, 327–351, https://doi.org/10.5194/esd-12-327-2021, https://doi.org/10.5194/esd-12-327-2021, 2021
Short summary
Short summary
Many projections of future land-use/-cover exist. We evaluate a number of these and determine the variability they cause in ecosystems and their services. We found that projections differ a lot in regional patterns, with some patterns being at least questionable in a historical context. Across ecosystem service indicators, resulting variability until 2040 was highest in crop production. Results emphasize that such variability should be acknowledged in assessments of future ecosystem provisions.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Cited articles
Abu-shakra, S. S., Phillips, D. A., and Huffaker, R. C.: Nitrogen Fixation
and Delayed Leaf Senescence in Soybeans, Science, 199, 973–975, 1978.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–371, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Ainsworth, E. A., Rogers, A., Leakey, A. D. B., Heady, L. E., Gibon, Y.,
Stitt, M., and Schurr, U.: Does elevated atmospheric [CO2] alter diurnal C
uptake and the balance of C and N metabolites in growing and fully expanded
soybean leaves?, J. Exp. Bot., 58, 579–591, https://doi.org/10.1093/jxb/erl233, 2007.
Becker, M., Ladha, J. K., and Ali, M.: Green manure technology: Potential,
usage, and limitations. A case study for lowland rice, Plant Soil, 174,
181–194, 1995.
Boote, K. J., Mínguez, M. I., and Sau, F.: Adapting the CROPGRO legume
model to simulate growth of faba bean, Agron. J., 94, 743–756,
https://doi.org/10.2134/agronj2002.7430, 2002.
Boote, K. J., Hoogenboom, G., Jones, J. W., and Ingram, K. T.: Modeling Nitrogen Fixation and Its Relationship to Nitrogen Uptake in the CROPGRO Model, in: Book Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling, CRC Press, 34 pp., ISBN 9780429140532, 2008.
Bouniols, A., Cabelguenne, M., Jones, C. A., Chalamet, A., Charpenteau, J.
L., and Marty, J. R.: Simulation of soybean nitrogen nutrition for a silty
clay soil in southern France, Field Crop. Res., 26, 19–34,
https://doi.org/10.1016/0378-4290(91)90054-Y, 1991.
Brar, N. and Lawley, Y.: Short-season soybean yield and protein unresponsive
to starter nitrogen fertilizer, Agron. J., 112, 5012–5023,
https://doi.org/10.1002/agj2.20378, 2020.
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer,
D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y. M.,
Cellier, P., Debaeke, P., Gaudillere, J. P., Henault, C., Maraux, F.,
Seguin, B., and Sinoquet, H.: An overview of the crop model STICS, Eur. J.
Agron., 18, 309–332, 2003.
Bruning, B. and Rozema, J.: Symbiotic nitrogen fixation in legumes:
Perspectives for saline agriculture, Environ. Exp. Bot., 92, 134–143,
https://doi.org/10.1016/j.envexpbot.2012.09.001, 2013.
Cabelguenne, M., Debaeke, P., and Bouniols, A.: EPICphase, a version of the
EPIC model simulating the effects of water and nitrogen stress on biomass
and yield, taking account of developmental stages: Validation on maize,
sunflower, sorghum, soybean and winter wheat, Agr. Syst., 60, 175–196,
https://doi.org/10.1016/S0308-521X(99)00027-X, 1999.
Chen, C., Lawes, R., Fletcher, A., Oliver, Y., Robertson, M., Bell, M., and
Wang, E.: How well can APSIM simulate nitrogen uptake and nitrogen fixation
of legume crops?, Field Crop. Res., 187, 35–48, https://doi.org/10.1016/j.fcr.2015.12.007, 2016.
Ciampitti, I. A. and Salvagiotti, F.: New insights into soybean biological
nitrogen fixation, Agron. J., 110, 1185–1196, https://doi.org/10.2134/agronj2017.06.0348, 2018.
Ciampitti, I. A., de Borja Reis, A. F., Córdova, S. C., Castellano, M.
J., Archontoulis, S. V., Correndo, A. A., Antunes De Almeida, L. F., and Moro
Rosso, L. H.: Revisiting Biological Nitrogen Fixation Dynamics in Soybeans,
Front. Plant Sci., 12, 727021, https://doi.org/10.3389/fpls.2021.727021, 2021.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R.
W., Hedin, L. O., Perakis, S. S., Latty, E. F., Von Fischer, J. C.,
Hlseroad, A., and Wasson, M. F.: Global patterns of terrestrial biological
nitrogen (N2) fixation in natural ecosystems, Global Biogeochem. Cy., 13, 623–645, https://doi.org/10.1029/1999GB900014, 1999.
Cleveland, C. C., Houlton, B. Z., Smith, W. K., Marklein, A. R., Reed, S.
C., Parton, W., Del Grosso, S. J., and Running, S. W.: Patterns of new versus
recycled primary production in the terrestrial biosphere, P. Natl. Acad.
Sci. USA, 110, 12733–12737, https://doi.org/10.1073/pnas.1302768110, 2013.
Córdova, S. C., Castellano, M. J., Dietzel, R., Licht, M. A., Togliatti,
K., Martinez-Feria, R., and Archontoulis, S. V.: Soybean nitrogen fixation
dynamics in Iowa, USA, Field Crop. Res., 236, 165–176,
https://doi.org/10.1016/j.fcr.2019.03.018, 2019.
Córdova, S. C., Archontoulis, S. V., and Licht, M. A.: Soybean
profitability and yield component response to nitrogen fertilizer in Iowa,
Agrosystems, Geosci. Environ., 3, 1–16, https://doi.org/10.1002/agg2.20092, 2020.
Corre-Hellou, G., Faure, M., Launay, M., Brisson, N., and Crozat, Y.:
Adaptation of the STICS intercrop model to simulate crop growth and N
accumulation in pea-barley intercrops, Field Crop. Res., 113, 72–81,
https://doi.org/10.1016/j.fcr.2009.04.007, 2009.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.
Davies-Barnard, T. and Friedlingstein, P.: The Global Distribution of
Biological Nitrogen Fixation in Terrestrial Natural Ecosystems, Global
Biogeochem. Cy., 34, e2019GB006387, https://doi.org/10.1029/2019GB006387, 2020.
Denton, M. D., Phillips, L. A., Peoples, M. B., Pearce, D. J., Swan, A. D.,
Mele, P. M., and Brockwell, J.: Legume inoculant application methods: effects
on nodulation patterns, nitrogen fixation, crop growth and yield in
narrow-leaf lupin and faba bean, Plant Soil, 419, 25–39,
https://doi.org/10.1007/s11104-017-3317-7, 2017.
DeVries, J. D., Bennett, J. M., Boote, K. J., Albrecht, S. L., and Maliro, C.
E.: Nitrogen accumulation and partitioning by three grain legumes in
response to soil water deficits, Field Crop. Res., 22, 33–44,
https://doi.org/10.1016/0378-4290(89)90087-7, 1989a.
DeVries, J. D., Bennett, J. M., Albrecht, S. L., and Boote, K. J.: Water
Relations , Nitrogenase Activity and Root Development of Three Grain Legumes
in Response to Soil Water Deficits, Field Crop. Res., 21, 215–226, 1989b.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel analysis and implications for our perception of the land
surface, B. Am. Meteorol. Soc., 87, 1381–1397, https://doi.org/10.1175/BAMS-87-10-1381, 2006.
Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community Land Model, Geosci. Model Dev., 6, 495–515, https://doi.org/10.5194/gmd-6-495-2013, 2013.
Eckersten, H., Geijersstam, L., and Torssell, B.: Modelling nitrogen fixation
of pea (Pisum sativum L.), Acta Agr. Scand. B-S. P., 56, 129–137, https://doi.org/10.1080/0906471051003050, 2006.
Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and Sheffield, J.: The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015, 2015.
Fageria, N. K.: Green manuring in crop production, J. Plant Nutr., 30,
691–719, https://doi.org/10.1080/01904160701289529, 2007.
FAO: More people, more food, worse water? a global review of water pollution from agriculture, edited by: Mateo-Sagasta, J., Zadeh, S. M., and Turral, H., FAO and IWMI, Rome and Colombo, 10 pp., ISBN 9789251307298, 2018.
FAOSTAT: Production/Crops and livestock products, FAOSTAT [data set], available at:
http://www.fao.org/faostat/en/#data/QC, last access: 19 August 2021.
Fehlenberg, V., Baumann, M., Gasparri, N. I., Piquer-Rodriguez, M.,
Gavier-Pizarro, G., and Kuemmerle, T.: The role of soybean production as an
underlying driver of deforestation in the South American Chaco, Global
Environ. Chang., 45, 24–34, https://doi.org/10.1016/j.gloenvcha.2017.05.001, 2017.
Fisher, J. B., Sitch, S., Malhi, Y., Fisher, R. A., Huntingford, C., and Tan,
S.-Y.: Carbon cost of plant nitrogen acquisition: A mechanistic, globally
applicable model of plant nitrogen uptake, retranslocation, and fixation,
Global Biogeochem. Cy., 24, GB1014, https://doi.org/10.1029/2009gb003621, 2010.
Gai, Z., Zhang, J., and Li, C.: Effects of starter nitrogen fertilizer on
soybean root activity, leaf photosynthesis and grain yield, PLoS ONE, 12, e0174841, https://doi.org/10.1371/journal.pone.0174841, 2017.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vörösmarty, C. J.: Nitrogen cycles: Past, present, and future, Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Gan, Y., Stulen, I., Van Keulen, H., and Kuiper, P. J. C.: Physiological
changes in soybean (Glycine max) Wuyin9 in response to N and P nutrition, Ann. Appl. Biol., 140, 319–329, https://doi.org/10.1111/j.1744-7348.2002.tb00188.x, 2002.
Gan, Y., Stulen, I., Van Keulen, H., and Kuiper, P. J. C.: Effect of N
fertilizer top-dressing at various reproductive stages on growth, N2
fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes, Field Crop. Res., 80, 147–155, https://doi.org/10.1016/S0378-4290(02)00171-5, 2003.
Gelfand, I. and Robertson, G. P.: A reassessment of the contribution of
soybean biological nitrogen fixation to reactive N in the environment,
Biogeochemistry, 123, 175–184, https://doi.org/10.1007/s10533-014-0061-4, 2015.
Hajduk, E., Właśniewski, S., and Szpunar-Krok, E.: Influence of legume
crops on content of organic carbon in sandy soil, Soil Science Annual, 66,
52–56, https://doi.org/10.1515/ssa-2015-0019, 2015.
Harris, D., Pacovsky, R. S., and Paul, E. A.: Carbon Economy of
Soybean–Rhizobium–Glomus Associations, New Phytol., 101, 427–440,
https://doi.org/10.1111/j.1469-8137.1985.tb02849.x, 1985.
Heilmayr, R., Rausch, L. L., Munger, J., and Gibbs, H. K.: Brazil's Amazon
Soy Moratorium reduced deforestation, Nature Food, 1, 801–810,
https://doi.org/10.1038/s43016-020-00194-5, 2020.
Herridge, D. F., Roughley, R. J., and Brockwell, J.: Effect of rhizobia and
soil nitrate on the establishment and functioning of the soybean symbiosis
in the field, Aust. J. Agr. Res., 35, 149–161, https://doi.org/10.1071/AR9840149, 1984.
Herridge, D. F., Peoples, M. B., and Boddey, R. M.: Global inputs of
biological nitrogen fixation in agricultural systems, Plant Soil, 311, 1–18, https://doi.org/10.1007/s11104-008-9668-3, 2008.
Houlton, B. Z., Wang, Y. P., Vitousek, P. M., and Field, C. B.: A unifying
framework for dinitrogen fixation in the terrestrial biosphere, Nature,
454, 327–330, https://doi.org/10.1038/nature07028, 2008.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Irmak, S., Odhiambo, L. O., Specht, J. E., and Djaman, K.: Hourly and daily
single and basal evapotranspiration crop coefficients as a function of
growing degree days, days after emergence, leaf area index, fractional green
canopy cover, and plant phenology for soybean, T. ASABE, 56, 1785–1803, https://doi.org/10.13031/trans.56.10219, 2013.
Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Henrik, H.
N., Alves, B. J. R., and Morrison, M. J.: Legumes for mitigation of climate
change and the provision of feedstock for biofuels and biorefineries. A
review, Agron. Sustain. Dev., 32, 329–364, 2012.
Jiang, S., Jardinaud, M., Gao, J., Pecrix, Y., Wen, J., Mysore, K., Xu, P.,
Sanchez-canizares, C., Ruan, Y., Li, Q., Zhu, M., Li, F., Wang, E., Poole,
P. S., Gamas, P., and Murray, J. D.: NIN-like protein transcription factors
regulate leghemoglobin genes in legume nodules, Science, 374, 625–628, 2021.
Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., and Giller, K. E.:
Are the rates of photosynthesis stimulated by the carbon sink strength of
rhizobial and arbuscular mycorrhizal symbioses?, Soil Biol. Biochem., 41,
1233–1244, https://doi.org/10.1016/j.soilbio.2009.03.005, 2009.
Kaschuk, G., Hungria, M., Leffelaar, P. A., Giller, K. E., and Kuyper, T. W.:
Differences in photosynthetic behaviour and leaf senescence of soybean
(Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply, Plant Biol., 12, 60–69, https://doi.org/10.1111/j.1438-8677.2009.00211.x, 2010.
Kattge, J., Bönisch, G., Díaz, S., et al.: TRY plant trait database – enhanced coverage and open access, Glob. Chang. Biol., 26, 119–188, https://doi.org/10.1111/gcb.14904, 2020.
Khan, D. F., Peoples, M. B., Schwenke, G. D., Felton, W. L., Chen, D., and
Herridge, D. F.: Effects of below-ground nitrogen on N balances of
field-grown fababean, chickpea, and barley, Aust. J. Agr. Res., 54, 333–340, https://doi.org/10.1071/AR02105, 2003.
Kull, O.: Acclimation of photosynthesis in canopies: Models and limitations,
Oecologia, 133, 267–279, https://doi.org/10.1007/s00442-002-1042-1, 2002.
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.
Lange, S., Menz, C., Gleixner, S., Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Müller Schmied, H., Hersbach, H., Buontempo, C., and Cagnazzo, C.: WFDE5 over land merged with ERA5 over the ocean, Version 2.0, ISIMIP Repository [data set], https://doi.org/10.48364/ISIMIP.342217, 2021.
Le Roux, M. R., Khan, S., and Valentine, A. J.: Nitrogen and carbon costs of
soybean and lupin root systems during phosphate starvation, Symbiosis,
48, 102–109, https://doi.org/10.1007/BF03179989, 2009.
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith, B.: Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa, Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, 2013.
Liu, L., Knight, J. D., Lemke, R. L., and Farrell, R. E.: A side-by-side
comparison of biological nitrogen fixation and yield of four legume crops,
Plant Soil, 442, 169–182, https://doi.org/10.1007/s11104-019-04167-x, 2019.
Liu, Y., Wu, L., Baddeley, J. A., and Watson, C. A.: Models of biological
nitrogen fixation of legumes. A review, Agron. Sustain. Dev., 31, 155–172, https://doi.org/10.1051/agro/2010008, 2011.
LPJ-GUESS: LPJ-GUESS Ecosystem Model, Lund University, available at: https://web.nateko.lu.se/lpj-guess/, last access: 14 July 2021.
Lu, C. and Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance, Earth Syst. Sci. Data, 9, 181–192, https://doi.org/10.5194/essd-9-181-2017, 2017.
Ma, J., Olin, S., Anthoni, P., Rabin, S. S., Bayer, A. D., Nyawira, S. S.,
and Arneth, A.: Jianyong Ma/BNF in grain legumes in LPJ-GUESS,
Zenodo [data set], https://doi.org/10.5281/zenodo.5148255, 2021.
Macduff, J. H., Jarvis, S. C., and Davidson, I. A.: Inhibition of N2 fixation by white clover (Trifolium repens L.) at low concentrations of NO in flowing solution culture, Plant Soil, 180, 287–295,
https://doi.org/10.1007/BF00015312, 1996.
Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor, C., and Gonzalez, E. M.: Nitrogen Fixation Control under Drought Stress. Localized or Systemic?, Plant Physiol., 143, 1968–1974, https://doi.org/10.1104/pp.106.097139, 2007.
Meena, R. S., Das, A., Singh, G., and Lal, R.: Legumes for Soil Health and
Sustainable Management, Springer, Singapore, https://doi.org/10.1007/978-981-13-0253-4, 2018.
Meyerholt, J., Zaehle, S., and Smith, M. J.: Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation, Biogeosciences, 13, 1491–1518, https://doi.org/10.5194/bg-13-1491-2016, 2016.
Mínguez, M. I., Ruiz-Nogueira, B., and Sau, F.: Faba bean productivity
and optimum canopy development under a Mediterranean climate, Field Crop. Res., 33, 435–447, https://doi.org/10.1016/0378-4290(93)90164-I, 1993.
Moss, B.: Water pollution by agriculture, Philos. T. Roy. Soc. B, 363, 659–666, https://doi.org/10.1098/rstb.2007.2176, 2008.
Mourtzinis, S., Kaur, G., Orlowski, J. M., Shapiro, C. A., Lee, C. D.,
Wortmann, C., Holshouser, D., Nafziger, E. D., Kandel, H., Niekamp, J.,
Ross, W. J., Lofton, J., Vonk, J., Roozeboom, K. L., Thelen, K. D., Lindsey,
L. E., Staton, M., Naeve, S. L., Casteel, S. N., Wiebold, W. J., and Conley,
S. P.: Soybean response to nitrogen application across the United States: A
synthesis-analysis, Field Crop. Res., 215, 74–82,
https://doi.org/10.1016/j.fcr.2017.09.035, 2018.
Muleta, D., Ryder, M. H., and Denton, M. D.: The potential for rhizobial
inoculation to increase soybean grain yields on acid soils in Ethiopia, Soil
Sci. Plant Nutr., 63, 441–451, https://doi.org/10.1080/00380768.2017.1370961, 2017.
Northup, B. K. and Rao, S. C.: Effects of legume green manures on forage
produced in continuous wheat systems, Agron. J., 108, 101–108,
https://doi.org/10.2134/agronj15.0031, 2016.
Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B., Bodin, P., Holmér, J., and Arneth, A.: Modelling the response of yields and tissue C:N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe, Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-2489-2015, 2015.
Osaki, M.: Carbon-nitrogen interaction model in field crop production, Plant
Soil, 155–156, 203–206, https://doi.org/10.1007/BF00025019, 1993.
Osborne, S. L. and Riedell, W. E.: Impact of low rates of nitrogen applied
at planting on soybean nitrogen fixation, J. Plant Nutr., 34, 436–448,
https://doi.org/10.1080/01904167.2011.536883, 2011.
Patterson, T. G. and Larue, T. A.: Root Respiration Associated with
Nitrogenase Activity (C2H2) of Soybean, and a Comparison of Estimates,
Plant Physiol., 72, 701–705, https://doi.org/10.1104/pp.72.3.701, 1983.
Penning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., and Bakema,
A.: Simulation of ecophysiological processes of growth in several annual
crops, Centre for Agricultural Publishing and Documentation, Wageningen,
Wageningen, 1989.
Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B.
J. R., Urquiaga, S., Boddey, R. M., Dakora, F. D., Bhattarai, S., Maskey, S.
L., Sampet, C., Rerkasem, B., Khan, D. F., Hauggaard-Nielsen, H., and Jensen,
E. S.: The contributions of nitrogen-fixing crop legumes to the productivity
of agricultural systems, Symbiosis, 48, 1–17, https://doi.org/10.1007/BF03179980, 2009.
Pikul, J. L., Carpenter-Boggs, L., Vigil, M., Schumacher, T. E., Lindstrom,
M. J., and Riedell, W. E.: Crop yield and soil condition under ridge and
chisel-plow tillage in the northern Corn Belt, USA, Soil Till. Res., 60, 21–33, https://doi.org/10.1016/S0167-1987(01)00174-X, 2001.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., and Villar, R.:
Causes and consequences of variation in leaf mass per area (LMA): A
meta-analysis, New Phytol., 182, 565–588,
https://doi.org/10.1111/j.1469-8137.2009.02830.x, 2009.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem.
Cy., 24, GB1011, https://doi.org/10.1029/2008gb003435, 2010.
Pugh, T. A. M., Arneth, A., Olin, S., Ahlström, A., Bayer, A. D., Klein
Goldewijk, K., Lindeskog, M., and Schurgers, G.: Simulated carbon emissions
from land-use change are substantially enhanced by accounting for
agricultural management, Environ. Res. Lett., 10 124008,
https://doi.org/10.1088/1748-9326/10/12/124008, 2015.
Purcell, L. C. and Sinclair, T. R.: Nitrogenase Activity and Nodule Gas
Permeability Response to Rhizospheric NH3 in Soybean, Plant Physiol., 92,
268–272, 1990.
Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M.,
Dentener, F., and Crutzen, P. J.: Global agriculture and nitrous oxide
emissions, Nat. Clim. Change, 2, 410–416, https://doi.org/10.1038/nclimate1458,
2012.
Rice, W. A., Clayton, G. W., Olsen, P. E., and Lupwayi, N. Z.: Rhizobial
inoculant formulations and soil ph influence field pea nodulation and
nitrogen fixation, Can. J. Soil Sci., 80, 395–400, https://doi.org/10.4141/S99-059,
2000.
Richards, F. J.: A flexible growth function for empirical use, J. Exp. Bot., 10, 290–301, https://doi.org/10.1093/jxb/10.2.290, 1959.
Robertson, M. J., Carberry, P. S., Huth, N. I., Turpin, J. E., Probert, M.
E., Poulton, P. L., Bell, M., Wright, G. C., Yeates, S. J., and Brinsmead, R.
B.: Simulation of growth and development of diverse legume species in APSIM,
Aust. J. Agr. Res., 53, 429–446, 2002.
Ryle, G. J. A., Powell, C. E., and Gordon, A. J.: The respiratory costs of
nitrogen fixation in soyabean, cowpea, and white clover: I. Nitrogen
fixation and the respiration of the nodulated root, J. Exp. Bot., 30,
135–144, https://doi.org/10.1093/jxb/30.1.135, 1979.
Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., and Dobermann, A.: Nitrogen uptake, fixation and response to fertilizer N in
soybeans: A review, Field Crop. Res., 108, 1–13,
https://doi.org/10.1016/j.fcr.2008.03.001, 2008.
Sanginga, N., Dashiell, K., Okogun, J. A., and Thottappilly, G.: Nitrogen
fixation and N contribution by promiscuous nodulating soybeans in the
southern Guinea savanna of Nigeria, Plant Soil, 195, 257–266,
https://doi.org/10.1023/A:1004207530131, 1997.
Santachiara, G., Borrás, L., and Rotundo, J. L.: Physiological processes
leading to similar yield in contrasting soybean maturity groups, Agron. J.,
109, 158–167, https://doi.org/10.2134/agronj2016.04.0198, 2017.
Santachiara, G., Salvagiotti, F., Gerde, J. A., and Rotundo, J. L.: Does
biological nitrogen fixation modify soybean nitrogen dilution curves?, Field
Crop. Res., 223, 171–178, https://doi.org/10.1016/j.fcr.2018.04.001, 2018.
Serraj, R., Sinclair, T. R., and Purcell, L. C.: Symbiotic N2 fixation
response to drought, J. Exp. Bot., 50, 143–155,
https://doi.org/10.1093/jxb/50.331.143, 1999.
Sinclair, T. R., Muchow, R. C., Ludlow, M. M., Leach, G. J., Lawn, R. J., and
Foale, M. A.: Field and model analysis of the effect of water deficits on
carbon and nitrogen accumulation by soybean, cowpea and black gram, Field Crop. Res., 17, 121–140, https://doi.org/10.1016/0378-4290(87)90087-6, 1987.
Singh, M., Wanjari, R. H., Dwivedi, A., and Dalal, R.: Yield response to
applied nutrients and estimates of N2 fixation in 33-year-old soybean-wheat experiment on a vertisol, Exp. Agr., 48, 311–325,
https://doi.org/10.1017/S0014479712000129, 2012.
Smil, V.: Nitrogen in crop production: An account of global flows adds, Global Biogeochem. Cy., 13, 647–662, 1999.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Soussana, J. F., Minchin, F. R., Macduff, J. H., Raistrick, N., Abberton, M.
T., and Michaelson-Yeates, T. P. T.: A simple model of feedback regulation
for nitrate uptake and N2 fixation in contrasting phenotypes of white
clover, Annals of Botany, 90, 139–147, https://doi.org/10.1093/aob/mcf161, 2002.
Srivastava, A. K. and Ambasht, R. S.: Soil moisture control of Nitrogen
fixation activity in dry tropical casuarina plantation forest, J. Environ.
Manage., 42, 49–54, 1994.
Stagnari, F., Maggio, A., Galieni, A., and Pisante, M.: Multiple benefits of
legumes for agriculture sustainability: an overview, Chemical and Biological Technologies in Agriculture, 4, 1–13, https://doi.org/10.1186/s40538-016-0085-1, 2017.
Tewari, K., Suganuma, T., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi,
Y., and Ohyama, T.: Effect of Deep Placement of N Fertilizers and Different
Inoculation Methods of Bradyrhizobia on Growth, N2 Fixation Activity and N
Absorption Rate of Field-grown Soybean Plants, J. Agron. Crop Sci., 190,
46–58, https://doi.org/10.1046/j.0931-2250.2003.00073.x, 2004.
Thornley, J. H. M. and Cannell, M. G. R.: Modelling the components of plant
respiration: Representation and realism, Annals of Botany, 85, 55–67,
https://doi.org/10.1006/anbo.1999.0997, 2000.
Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., Arneth,
A., Chang, J., Chen, G., Ciais, P., Gerber, S., Ito, A., Huang, Y., Joos,
F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E.,
Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B., Zhang,
K., and Zhu, Q.: The global N2O model intercomparison project, B. Am.
Meteorol. Soc., 99, 1231–1251, https://doi.org/10.1175/BAMS-D-17-0212.1, 2018.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S.,
Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins,
J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B.,
Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara,
T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G.,
Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J.,
Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A
comprehensive quantification of global nitrous oxide sources and sinks,
Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
Ulzen, J., Abaidoo, R. C., Mensah, N. E., Masso, C., and AbdelGadir, A. A.
H.: Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in
Northern Ghana, Front. Plant Sci., 7, 1–9, https://doi.org/10.3389/fpls.2016.01770,
2016.
Unkovich, M. J. and Pate, J. S.: An appraisal of recent field measurements
of symbiotic N2 fixation by annual legumes, Field Crop. Res., 65, 211–228, https://doi.org/10.1016/S0378-4290(99)00088-X, 2000.
Unkovich, M. J., Baldock, J., and Peoples, M. B.: Prospects and problems of
simple linear models for estimating symbiotic N2 fixation by crop and
pasture legumes, Plant Soil, 329, 75–89, https://doi.org/10.1007/s11104-009-0136-5,
2010.
Vanlauwe, B., Hungria, M., Kanampiu, F., and Giller, K. E.: The role of
legumes in the sustainable intensification of African smallholder
agriculture: Lessons learnt and challenges for the future, Agr. Ecosyst.
Environ., 284, 106583, https://doi.org/10.1016/j.agee.2019.106583, 2019.
Vitousek, P. M., Menge, D. N. L., Reed, S. C., and Cleveland, C. C.:
Biological nitrogen fixation: Rates, patterns and ecological controls in
terrestrial ecosystems, Philos. T. Roy. Soc. B, 368, 20130119, https://doi.org/10.1098/rstb.2013.0119, 2013.
Voisin, A. S., Salon, C., Jeudy, C., and Warembourg, F. R.: Symbiotic N2
fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology, J. Exp. Bot., 54, 2733–2744,
https://doi.org/10.1093/jxb/erg290, 2003.
Voisin, A. S., Bourion, V., Duc, G., and Salon, C.: Using an ecophysiological
analysis to dissect genetic variability and to propose an ideotype for
nitrogen nutrition in pea, Annals of Botany, 100, 1525–1536, https://doi.org/10.1093/aob/mcm241, 2007.
Voisin, A. S., Guéguen, J., Huyghe, C., Jeuffroy, M. H., Magrini, M. B.,
Meynard, J. M., Mougel, C., Pellerin, S., and Pelzer, E.: Legumes for feed,
food, biomaterials and bioenergy in Europe: A review, Agron. Sustain. Dev.,
34, 361–380, https://doi.org/10.1007/s13593-013-0189-y, 2014.
Volkholz, J. and Müller, C.: ISIMIP3 soil input data (v1.0), ISIMIP Repository [data set], https://doi.org/10.48364/ISIMIP.942125, 2020.
von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K., and Zaehle, S.: Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci. Model Dev., 11, 2789–2812, https://doi.org/10.5194/gmd-11-2789-2018, 2018.
Waha, K., Van Bussel, L. G. J., Müller, C., and Bondeau, A.:
Climate-driven simulation of global crop sowing dates, Glob. Ecol.
Biogeogr., 21, 247–259, https://doi.org/10.1111/j.1466-8238.2011.00678.x, 2012.
Wang, E. and Engel, T.: Simulation of phenological development of wheat
crops, Agr. Syst., 58, 1–24, https://doi.org/10.1016/S0308-521X(98)00028-6, 1998.
Wang, Y. P. and Houlton, B. Z.: Nitrogen constraints on terrestrial carbon
uptake: Implications for the global carbon-climate feedback, Geophys. Res.
Lett., 36, L24403, https://doi.org/10.1029/2009GL041009, 2009.
Wårlind, D., Smith, B., Hickler, T., and Arneth, A.: Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model, Biogeosciences, 11, 6131–6146, https://doi.org/10.5194/bg-11-6131-2014, 2014.
Waterer, J. G. and Vessey, J. K.: Effect of low static nitrate
concentrations on mineral nitrogen uptake, nodulation, and nitrogen fixation
in field pea, J. Plant Nutr., 16, 1775–1789, https://doi.org/10.1080/01904169309364649, 1993.
Weisz, P. R., Denison, R. F., and Sinclair, T. R.: Response to drought stress
of nitrogen fixation (acetylene reduction) rates by field-grown soybeans,
Plant Physiol., 78, 525–530, https://doi.org/10.1104/pp.78.3.525, 1985.
Williams, C. M., King, J. R., Ross, S. M., Olson, M. A., Hoy, C. F., and
Lopetinsky, K. J.: Effects of three pulse crops on subsequent barley,
canola, and wheat, Agron. J., 106, 343–350, https://doi.org/10.2134/agronj2013.0274,
2014.
Wu, L. and McGechan, M. B.: Simulation of nitrogen uptake, fixation and
leaching in a grass/white clover mixture, Grass Forage Sci., 54, 30–41,
https://doi.org/10.1046/j.1365-2494.1999.00145.x, 1999.
Wu, L., Misselbrook, T. H., Feng, L., and Wu, L.: Assessment of nitrogen
uptake and biological nitrogen fixation responses of soybean to nitrogen
fertiliser with SPACSYS, Sustainability, 12, 5921, https://doi.org/10.3390/SU12155921, 2020.
Xia, X., Ma, C., Dong, S., Xu, Y., and Gong, Z.: Effects of nitrogen
concentrations on nodulation and nitrogenase activity in dual root systems
of soybean plants, Soil Sci. Plant Nutr., 63, 470–482,
https://doi.org/10.1080/00380768.2017.1370960, 2017.
Xu-Ri and Prentice, I. C.: Modelling the demand for new nitrogen fixation by terrestrial ecosystems, Biogeosciences, 14, 2003–2017, https://doi.org/10.5194/bg-14-2003-2017, 2017.
Yin, X. and Struik, P. C.: Modelling the crop: From system dynamics to
systems biology, J. Exp. Bot., 61, 2171–2183, https://doi.org/10.1093/jxb/erp375, 2010.
Yu, M., Gao, Q., and Shaffer, M. J.: Simulating Interactive Effects of
Symbiotic Nitrogen Fixation, Carbon Dioxide Elevation, and Climatic Change
on Legume Growth, J. Environ. Qual., 31, 634–641, https://doi.org/10.2134/jeq2002.6340, 2002.
Yu, T. and Zhuang, Q.: Modeling biological nitrogen fixation in global natural terrestrial ecosystems, Biogeosciences, 17, 3643–3657, https://doi.org/10.5194/bg-17-3643-2020, 2020.
Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN
land surface model: 1. Model description, site-scale evaluation, and
sensitivity to parameter estimates, Global Biogeochem. Cy., 24, GB1005,
https://doi.org/10.1029/2009GB003521, 2010.
Zahran, H. H.: Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe
Conditions and in an Arid Climate, Microbiol. Mol. Biol. R., 63, 968–989, https://doi.org/10.1128/mmbr.63.4.968-989.1999, 1999.
Zapata, F., Danso, S. K. A., Hardarson, G., and Fried, M.: Time Course of
Nitrogen Fixation in Field-Grown Soybean Using Nitrogen-15 Methodology, Agron. J., 79, 172–176, https://doi.org/10.2134/agronj1987.00021962007900010035x,
1987.
Zhang, B., Tian, H., Lu, C., Dangal, S. R. S., Yang, J., and Pan, S.: Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling, Earth Syst. Sci. Data, 9, 667–678, https://doi.org/10.5194/essd-9-667-2017, 2017.
Zhou, H., Yao, X., Zhao, Q., Zhang, W., Zhang, B., and Xie, F.: Rapid Effect
of Nitrogen Supply for Soybean at the Beginning Flowering Stage on Biomass
and Sucrose Metabolism, Scientific Reports, 9, 15530,
https://doi.org/10.1038/s41598-019-52043-6, 2019.
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an...