Articles | Volume 15, issue 21
https://doi.org/10.5194/gmd-15-8041-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8041-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind work at the air-sea interface: a modeling study in anticipation of future space missions
Hector S. Torres
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Patrice Klein
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA
LMD/IPSL, CNRS, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
Jinbo Wang
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Alexander Wineteer
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Bo Qiu
University of Hawaii, Honolulu, HI, USA
Andrew F. Thompson
Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA
Lionel Renault
LEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France
Ernesto Rodriguez
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Dimitris Menemenlis
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Andrea Molod
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Christopher N. Hill
Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Boston, MA, USA
Ehud Strobach
Agricultural Research Organization, Rishon LeZion, Israel
Hong Zhang
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Mar Flexas
Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA
Dragana Perkovic-Martin
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Model code and software
Wind work at the air-sea interface: A modeling study in anticipation of future space missions Hector S. Torres https://doi.org/10.5281/zenodo.6686083
Video supplement
Wind work at the air-sea interface: A modeling study in anticipation of future space missions Hector S. Torres https://doi.org/10.5281/zenodo.6478679
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Wind work at the air-sea interface is the scalar product of winds and currents and is the...