Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6759-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6759-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of four algorithms for detecting tropical cyclones using ERA5
Stella Bourdin
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris-Saclay, Gif-sur-Yvette, France
Sébastien Fromang
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris-Saclay, Gif-sur-Yvette, France
William Dulac
Centre National de Recherches Météorologiques, Université de Toulouse, Météo France, CNRS, Toulouse, France
Julien Cattiaux
Centre National de Recherches Météorologiques, Université de Toulouse, Météo France, CNRS, Toulouse, France
Fabrice Chauvin
Centre National de Recherches Météorologiques, Université de Toulouse, Météo France, CNRS, Toulouse, France
Related authors
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Davide Faranda, Stella Bourdin, Mireia Ginesta, Meriem Krouma, Robin Noyelle, Flavio Pons, Pascal Yiou, and Gabriele Messori
Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, https://doi.org/10.5194/wcd-3-1311-2022, 2022
Short summary
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
Onaïa Savary, Constantin Ardilouze, and Julien Cattiaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-3308, https://doi.org/10.5194/egusphere-2025-3308, 2025
Short summary
Short summary
We investigate the link between European meteorological droughts and persistent year-round weather regimes derived from mid-tropospheric circulation. Using a novel regionalization based on drought synchronicity and reanalysis data, we show that regime frequency anomalies partly explain drought occurrence, especially in western Europe and in winter, highlighting both the potential and limits of regime-based drought prediction.
Peter Pfleiderer, Anna Merrifield, István Dunkl, Homer Durand, Enora Cariou, Julien Cattiaux, and Sebastian Sippel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2397, https://doi.org/10.5194/egusphere-2025-2397, 2025
Short summary
Short summary
Due to changes in atmospheric circulation some regions are warming quicker than others. Statistical methods are used to estimate how much of the local summer temperature trends are due to circulation changes. We evaluate these methods by comparing their estimates to special simulations representing only temperature changes related to circulation changes. By applying the methods to observations of 1979–2023 we find that half of the warming over parts of Europe is related to circulation changes.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Davide Faranda, Stella Bourdin, Mireia Ginesta, Meriem Krouma, Robin Noyelle, Flavio Pons, Pascal Yiou, and Gabriele Messori
Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, https://doi.org/10.5194/wcd-3-1311-2022, 2022
Short summary
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
Cited articles
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J.,
Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J.,
Storelvmo, T., Thorne, P., Trewin, B., Achuta Rao, K., Adhikary, B., Allan,
R., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J., Cassou,
C., Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S., Cruz, F.,
Dentener, F., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes,
F., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E.,
Forster, P., Fox-Kemper, B., Fuglestvedt, J., Fyfe, J., Gillett, N.,
Goldfarb, L., Gorodetskaya, I., Gutierrez, J., Hamdi, R., Hawkins, E.,
Hewitt, H., Hope, P., Islam, A., Jones, C., Kaufman, D., Kopp, R., Kosaka,
Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock,
T., Meinshausen, M., Min, S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto,
I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée,
J.-B., Samset, B., Sathyendranath, S., Seneviratne, S., Sörensson, A.,
Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von
Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical Summary,
33–144, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf (last access: 22 August 2022), 2021. a
Avila, L. A., Pasch, R. J., and Jiing, J.-G.: Atlantic tropical systems of 1996
and 1997: Years of contrasts, Mon. Weather Rev., 128, 3695–3706, 2000. a
Ayrault, F.: Environnement, structure et évolution des dépressions
météorologiques: réalité climatologique et modèles types,
PhD thesis, Toulouse, 3, 1998. a
Bengtsson, L., Hodges, K. I., Esch, M., Keenlyside, N., Kornblueh, L., Luo,
J.-J., and Yamagata, T.: How may tropical cyclones change in a warmer
climate?, Tellus A, 59, 539–561,
https://doi.org/10.1111/j.1600-0870.2007.00251.x, 2007. a
Bourdin, S.: Bourdin et al. 2022, Intercomparison of Four Tropical Cyclones Detection Algorithms on ERA5 – Code and Data (Version v1), Zenodo [code and data], https://doi.org/10.5281/zenodo.6424432, 2022a. a
Bourdin, S.: DynamicoPy v0.6 (0.6), Zenodo [code and data], https://doi.org/10.5281/zenodo.7015245, 2022b. a
Camargo, S. J.: Global and Regional Aspects of Tropical Cyclone
Activity in the CMIP5 Models, J. Climate, 26, 9880–9902,
https://doi.org/10.1175/JCLI-D-12-00549.1, 2013. a
Camargo, S. J. and Wing, A. A.: Tropical cyclones in climate models, WIREs
Climate Change, 7, 211–237, https://doi.org/10.1002/wcc.373, 2016. a
Camargo, S. J. and Zebiak, S. E.: Improving the Detection and Tracking of
Tropical Cyclones in Atmospheric General Circulation Models,
Weather Forecast., 17, 1152–1162,
https://doi.org/10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2, 2002. a, b
Cattiaux, J., Chauvin, F., Bousquet, O., Malardel, S., and Tsai, C.-L.:
Projected Changes in the Southern Indian Ocean Cyclone Activity
Assessed from High-Resolution Experiments and CMIP5 Models,
J. Climate, 33, 4975–4991, https://doi.org/10.1175/JCLI-D-19-0591.1, 2020. a
Chauvin, F., Royer, J.-F., and Déqué, M.: Response of hurricane-type vortices
to global warming as simulated by ARPEGE-Climat at high resolution,
Clim. Dynam., 27, 377–399, https://doi.org/10.1007/s00382-006-0135-7, 2006. a, b, c, d
Chauvin, F., Pilon, R., Palany, P., and Belmadani, A.: Future changes in
Atlantic hurricanes with the rotated-stretched ARPEGE-Climat at very
high resolution, Clim. Dynam., 54, 947–972,
https://doi.org/10.1007/s00382-019-05040-4, 2020. a
Chavas, D. R., Reed, K. A., and Knaff, J. A.: Physical understanding of the
tropical cyclone wind-pressure relationship, Nat. Commun., 8, 1360,
https://doi.org/10.1038/s41467-017-01546-9, 2017. a
Davis, C. A.: Resolving Tropical Cyclone Intensity in Models,
Geophys. Res. Lett., 45, 2082–2087,
https://doi.org/10.1002/2017GL076966, 2018. a
Duvel, J.-P.: On vortices initiated over West Africa and their impact on North
Atlantic tropical cyclones, Mon. Weather Re., 149, 585–601, 2021. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Harper, B., Kepert, J. D., and Ginger, J. D.: Guidelines for converting between
various wind averaging periods in tropical cyclone conditions,
world Meteorological Organization Rep., 54 pp.,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.730.9719&rep=rep1&type=pdf (last access: 22 August 2022), 2010. a
Hart, R. E.: A Cyclone Phase Space Derived from Thermal Wind and
Thermal Asymmetry, Mon. Weather Rev., 131, 585–616,
https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2, 2003. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hodges, K. I.: A General Method for Tracking Analysis and Its
Application to Meteorological Data, Mon. Weather Rev., 122,
2573–2586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2, 1994. a, b, c, d
Hodges, K. I.: Feature Tracking on the Unit Sphere, Mon. Weather
Rev., 123, 3458–3465,
https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2, 1995. a
Hodges, K. I.: Adaptive Constraints for Feature Tracking, Mon. Weather
Rev., 127, 1362–1373,
https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2, 1999. a
Hopsch, S. B., Thorncroft, C. D., Hodges, K., and Aiyyer, A.: West African
storm tracks and their relationship to Atlantic tropical cyclones, J.
Climate, 20, 2468–2483, 2007. a
Horn, M., Walsh, K., Zhao, M., Camargo, S. J., Scoccimarro, E., Murakami, H.,
Wang, H., Ballinger, A., Kumar, A., Shaevitz, D. A., Jonas, J. A., and
Oouchi, K.: Tracking Scheme Dependence of Simulated Tropical
Cyclone Response to Idealized Climate Simulations, J.
Climate, 27, 9197–9213, https://doi.org/10.1175/JCLI-D-14-00200.1, 2014. a, b, c
Klotzbach, P. J., Bell, M. M., Bowen, S. G., Gibney, E. J., Knapp, K. R., and
Schreck, C. J.: Surface Pressure a More Skillful Predictor of
Normalized Hurricane Damage than Maximum Sustained Wind, B. Am. Meteorol. Soc., 101, E830–E846,
https://doi.org/10.1175/BAMS-D-19-0062.1, 2020. a, b, c, d
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C.:
International best track archive for climate stewardship (IBTrACS) project,
version 4, https://doi.org/10.25921/82ty-9e16, subset: since1980, 2018. a
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical
Cyclones and Climate Change Assessment: Part I: Detection and
Attribution, B. Am. Meteorol. Soc., 100,
1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019. a
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical
Cyclones and Climate Change Assessment: Part II: Projected
Response to Anthropogenic Warming, B. Am.
Meteorol. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020. a, b
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi,
G. A., Villarini, G., and Chavas, D.: Global Projections of Intense
Tropical Cyclone Activity for the Late Twenty-First Century
from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios, J.
Climate, 28, 7203–7224, https://doi.org/10.1175/JCLI-D-15-0129.1, 2015. a
Landsea, C. W.: A climatology of intense (or major) Atlantic hurricanes,
Mon. Weather Rev., 121, 1703–1713, 1993. a
Manganello, J. V., Hodges, K. I., Kinter, J. L., Cash, B. A., Marx, L., Jung,
T., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Huang, B., Jin, E. K.,
Stan, C., Towers, P., and Wedi, N.: Tropical Cyclone Climatology in a
10-km Global Atmospheric GCM: Toward Weather-Resolving Climate
Modeling, J. Climate, 25, 3867–3893,
https://doi.org/10.1175/JCLI-D-11-00346.1,
2012. a, b
Murakami, H.: Tropical cyclones in reanalysis data sets, Geophysical Research
Letters, 41, 2133–2141, https://doi.org/10.1002/2014GL059519, 2014. a, b, c, d
Murakami, H., Vecchi, G. A., Underwood, S., Delworth, T. L., Wittenberg, A. T.,
Anderson, W. G., Chen, J.-H., Gudgel, R. G., Harris, L. M., Lin, S.-J., and
Zeng, F.: Simulation and Prediction of Category 4 and 5 Hurricanes in
the High-Resolution GFDL HiFLOR Coupled Climate Model, J. Climate, 28, 9058–9079, https://doi.org/10.1175/JCLI-D-15-0216.1, 2015. a
Patricola, C. M., Saravanan, R., and Chang, P.: The response of Atlantic
tropical cyclones to suppression of African easterly waves, Geophys.
Res. Lett., 45, 471–479, 2018. a
Raavi, P. H. and Walsh, K. J. E.: Sensitivity of Tropical Cyclone
Formation to Resolution-Dependent and Independent Tracking
Schemes in High-Resolution Climate Model Simulations, Earth
Space Sci., 7, e2019EA000906, https://doi.org/10.1029/2019EA000906, 2020. a, b, c
Roberts, M. J., Vidale, P. L., Mizielinski, M. S., Demory, M.-E., Schiemann,
R., Strachan, J., Hodges, K., Bell, R., and Camp, J.: Tropical Cyclones in
the UPSCALE Ensemble of High-Resolution Global Climate Models,
J. Climate, 28, 574–596, https://doi.org/10.1175/JCLI-D-14-00131.1, 2015. a
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B.,
Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P.,
Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts,
C., Senan, R., Zarzycki, C., and Ullrich, P.: Impact of Model Resolution
on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA
Multimodel Ensemble, J. Climate, 33, 2557–2583,
https://doi.org/10.1175/JCLI-D-19-0639.1,
2020a. a, b, c, d, e, f, g, h
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vannière, B.,
Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.-P.,
Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts,
C. D., Senan, R., Zarzycki, C., Ullrich, P., Yamada, Y., Mizuta, R., Kodama,
C., Fu, D., Zhang, Q., Danabasoglu, G., Rosenbloom, N., Wang, H., and Wu, L.:
Projected Future Changes in Tropical Cyclones Using the CMIP6
HighResMIP Multimodel Ensemble, Geophys. Res. Lett., 47,
e2020GL088662, https://doi.org/10.1029/2020GL088662,
2020b. a, b
Schenkel, B. A. and Hart, R. E.: An Examination of Tropical Cyclone
Position, Intensity, and Intensity Life Cycle within Atmospheric
Reanalysis Datasets, J. Climate, 25, 3453–3475,
https://doi.org/10.1175/2011JCLI4208.1,
2012. a, b
Simpson, R. H. and Saffir, H.: The hurricane disaster potential scale,
Weatherwise, 27, 169, 1974. a
Strachan, J., Vidale, P. L., Hodges, K., Roberts, M., and Demory, M.-E.:
Investigating Global Tropical Cyclone Activity with a Hierarchy of
AGCMs: The Role of Model Resolution, J. Climate, 26,
133–152, https://doi.org/10.1175/JCLI-D-12-00012.1, 2013. a, b
Thorncroft, C. and Hodges, K.: African Easterly Wave Variability and
Its Relationship to Atlantic Tropical Cyclone Activity, J. Climate, 14, 1166–1179,
https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2, 2001. a
Tory, K. J., Chand, S. S., Dare, R. A., and McBride, J. L.: An Assessment of
a Model-, Grid-, and Basin-Independent Tropical Cyclone
Detection Scheme in Selected CMIP3 Global Climate Models,
J. Climate, 26, 5508–5522, https://doi.org/10.1175/JCLI-D-12-00511.1,
2013a. a, b
Tory, K. J., Dare, R. A., Davidson, N. E., McBride, J. L., and Chand, S. S.: The importance of low-deformation vorticity in tropical cyclone formation, Atmos. Chem. Phys., 13, 2115–2132, https://doi.org/10.5194/acp-13-2115-2013, 2013c. a, b, c
Ullrich, P. A. and Zarzycki, C. M.: TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, 2017. a, b, c
Ullrich, P. A., Zarzycki, C. M., McClenny, E. E., Pinheiro, M. C., Stansfield, A. M., and Reed, K. A.: TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets, Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021, 2021. a, b, c, d, e, f
Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg,
A. T., Zeng, F., Zhang, W., Baldwin, J. W., Bhatia, K. T., Cooke, W., He, J.,
Kapnick, S. B., Knutson, T. R., Villarini, G., van der Wiel, K., Anderson,
W., Balaji, V., Chen, J., Dixon, K. W., Gudgel, R., Harris, L. M., Jia, L.,
Johnson, N. C., Lin, S.-J., Liu, M., Ng, C. H. J., Rosati, A., Smith, J. A.,
and Yang, X.: Tropical cyclone sensitivities to CO2 doubling: roles of
atmospheric resolution, synoptic variability and background climate changes,
Clim. Dynam., 53, 5999–6033, https://doi.org/10.1007/s00382-019-04913-y, 2019. a
Walsh, K., Lavender, S., Scoccimarro, E., and Murakami, H.: Resolution
dependence of tropical cyclone formation in CMIP3 and finer resolution
models, Clim. Dynam., 3-4, 585–599, https://doi.org/10.1007/s00382-012-1298-z,
2013. a
Walsh, K. J. E., Fiorino, M., Landsea, C. W., and McInnes, K. L.: Objectively
Determined Resolution-Dependent Threshold Criteria for the
Detection of Tropical Cyclones in Climate Models and Reanalyses,
J. Climate, 20, 2307–2314, https://doi.org/10.1175/JCLI4074.1, 2007. a
Walsh, K. J. E., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner, J.,
Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., Patricola, C., Scoccimarro,
E., Sobel, A. H., Strazzo, S., Villarini, G., Wehner, M., Zhao, M., Kossin,
J. P., LaRow, T., Oouchi, K., Schubert, S., Wang, H., Bacmeister, J., Chang,
P., Chauvin, F., Jablonowski, C., Kumar, A., Murakami, H., Ose, T., Reed,
K. A., Saravanan, R., Yamada, Y., Zarzycki, C. M., Vidale, P. L., Jonas,
J. A., and Henderson, N.: Hurricanes and Climate: The U.S. CLIVAR
Working Group on Hurricanes, B. Am. Meteorol.
Soc., 96, 997–1017, https://doi.org/10.1175/BAMS-D-13-00242.1, 2015. a
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations of Global
Hurricane Climatology, Interannual Variability, and Response to
Global Warming Using a 50-km Resolution GCM, J. Climate,
22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009. a
Short summary
When studying tropical cyclones in a large dataset, one needs objective and automatic procedures to detect their specific pattern. Applying four different such algorithms to a reconstruction of the climate, we show that the choice of the algorithm is crucial to the climatology obtained. Mainly, the algorithms differ in their sensitivity to weak storms so that they provide different frequencies and durations. We review the different options to consider for the choice of the tracking methodology.
When studying tropical cyclones in a large dataset, one needs objective and automatic procedures...