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Abstract. The assessment of tropical cyclone (TC) statistics
requires the direct, objective, and automatic detection and
tracking of TCs in reanalyses and model simulations. Re-
search groups have independently developed numerous al-
gorithms during recent decades in order to answer that need.
Today, there is a large number of trackers that aim to detect
the positions of TCs in gridded datasets. The questions we
ask here are the following: does the choice of tracker impact
the climatology obtained? And, if it does, how should we
deal with this issue?

This paper compares four trackers with very different for-
mulations in detail. We assess their performances by tracking
TCs in the ERA5 reanalysis and by comparing the outcome
to the IBTrACS observations database.

We find typical detection rates of the trackers around 80 %.
At the same time, false alarm rates (FARs) greatly vary
across the four trackers and can sometimes exceed the num-
ber of genuine cyclones detected. Based on the finding that
many of these false alarms (FAs) are extra-tropical cyclones
(ETCs), we adapt two existing filtering methods common to
all trackers. Both post-treatments dramatically impact FARs,
which range from 9 % to 36 % in our final catalogs of TC
tracks. We then show that different traditional metrics can be
very sensitive to the particular choice of tracker, which is par-
ticularly true for the TC frequencies and their durations. By
contrast, all trackers identify a robust negative bias in ERA5
TC intensities, a result already noted in previous studies.

We conclude by advising against using as many trackers
as possible and averaging the results. A more efficient ap-
proach would involve selecting one or a few trackers with
well-known and complementary properties.

1 Introduction

Assessing whether and how tropical cyclone (TC) activity
will evolve with climate change is a crucial but difficult ques-
tion to tackle. Since the theoretical understanding of these
events remains incomplete, and the observations’ time span
is too short to infer robust trends in their properties, pro-
jections of TC activity typically rely on model simulations
(Knutson et al., 2019, 2020). In this realm, the main imped-
iment is their limited spatial resolution, which is currently
around 100 km for the vast majority of CMIP6 models. This
resolution is still too low to simulate realistic TCs (Camargo
and Wing, 2016; Roberts et al., 2020a). However, with the re-
cent advances in computational resources, global simulations
with atmospheric spatial resolutions that reach 50–25 km are
now feasible and will become more and more common in the
future. The few high-resolution model results already pub-
lished clearly demonstrate a dramatic improvement in simu-
lating TCs (Manganello et al., 2012; Murakami et al., 2015;
Walsh et al., 2015; Roberts et al., 2020a). This avenue is rais-
ing hopes in our capacity to better understand these storms
and to better predict their future evolution.

Studying TCs in global simulations spanning several
decades requires their objective and automatic detection and
tracking, which is accomplished by so-called TC trackers.
Trackers are algorithms that are able to detect cyclonic struc-
tures associated with a warm core in a gridded dataset and
link them together into a trajectory. Many modeling and
operational centers have developed such trackers indepen-
dently, and there is now a wealth of such algorithms avail-
able to the community and described in the literature (see for
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example the list compiled by Zarzycki and Ullrich, 2017, in
the Appendix of their paper). Broadly speaking, TC trackers
can be divided in two main categories: “physics-based” and
“dynamics-based” trackers. The former rely on thermody-
namical variables. They are based on the detection of a local
minimum sea-level pressure (SLP) combined with a warm-
core criterion – usually expressed as a temperature anomaly
or a geopotential thickness – on top of which discriminat-
ing intensity criteria are applied based on surface winds or
vorticity. This category includes, for example, the trackers
from Camargo and Zebiak (2002), Zhao et al. (2009), Mu-
rakami (2014), Horn et al. (2014), or Chauvin et al. (2006)
and Zarzycki and Ullrich (2017), hereafter referred to as
CNRM and UZ, respectively. “Dynamics-based” trackers, on
the other hand, rely on dynamical variables such as vorticity
or other derivatives of the velocity. They include the TRACK
method (Strachan et al., 2013; Hodges et al., 2017) and the
OWZ algorithm (Tory et al., 2013b). Trackers in the lat-
ter category often claim to be resolution-independent (Tory
et al., 2013a). By contrast, the physics-based trackers usually
embed a threshold on the 10 m wind: a parameter known to
be very sensitive to resolution (Walsh et al., 2007).

Despite this diversity, only a few studies explicitly aim to
compare different TC trackers. Horn et al. (2014) were the
first to put forward the question of tracker comparison. The
authors showed that the results obtained using four physics-
based trackers could vary significantly because of the dif-
ferent thresholds and criterion variables used by the differ-
ent algorithms. Raavi and Walsh (2020) later performed a
similar comparison between the CSIRO and OWZ trackers.
The OWZ tracker was found to produce better results across
a wide range of resolutions, while the CSIRO tracker per-
formed better for the high-resolution datasets.

These studies confirm the naive expectation that differ-
ent tracking algorithms inevitably have different TC detec-
tion skills. As a result, it is often difficult to compare differ-
ent studies because they use different trackers. For example,
future projections of TC frequencies in CMIP5 as reported
by Tory et al. (2013b) and Camargo (2013) are difficult to
compare because they used the OWZ tracker and that of Ca-
margo and Zebiak (2002), respectively. Two recent papers by
Roberts et al. (2020a) have tried to circumvent this problem
using multiple trackers when analyzing a given dataset and
check whether the result is robust, i.e., independent of the
tracker (Roberts et al., 2020a, b). These intercomparisons of
a series of HighResMIP simulations (Haarsma et al., 2016)
use TRACK and UZ. In both papers, the authors reported
large differences between the two trackers in the frequencies
of TCs. Nevertheless, they also confirmed robust improve-
ments in TC statistics with spatial resolution regardless of
the tracking algorithm they considered. However, a detailed
comparison of the two trackers’ properties is still lacking at
these high spatial resolutions and would improve interpreta-
tions of modeling results. The present paper performs such
a comparison in order to document the relative strengths and

weaknesses of the large variety of trackers presented above,
as well as provide guidelines for the use of TC trackers in
climate simulation outputs.

This paper reports the results of an intercomparison of
four different trackers with properties as different as possi-
ble from one another in terms of their formulation. The re-
port is based on a comparison between the tracks detected by
these trackers on a reanalysis (ERA5, Hersbach et al., 2020)
and those recorded in an observation database, i.e., the In-
ternational Best Track Archive for Climate Stewardship (IB-
TrACS, Knapp et al., 2010). This study uses the reanalysis
as a bridge between observations and simulation. Our main
goal is not to provide an assessment of ERA5 performances
in reproducing a given TC climatology but to compare the
trackers with one another. Numerous studies have under-
gone such an assessment on several other reanalyses, includ-
ing ERA5’s predecessor ERA-Interim (Hodges et al., 2017;
Schenkel and Hart, 2012; Murakami, 2014; Bell et al., 2018).
Only recently, Zarzycki et al. (2021) presented an evaluation
of ERA5’s TCs against other reanalyses. The study shows
that ERA5 performs as well as reanalyses that include spe-
cific TC assimilation techniques such as JRA and NCEP,
and that a significant improvement is brought about by the
increase in resolution between ERA-Interim and ERA5. A
comprehensive assessment of TCs in ERA5 will be presented
in future work.

The paper is organized as follows: after a description of
the classification and datasets, we detail the algorithms of the
four trackers as well as our track-matching method (Sect. 2).
We then use the four trackers to track TCs in ERA5 and
to match the detected tracks with IBTrACS tracks, and we
present a detailed analysis of the population of missing and
false alarm (FA) tracks so obtained (Sect. 3.1). This knowl-
edge is taken into account to develop two methods common
to all trackers that aim to filter extra-tropical FAs from the
results (Sect. 3.2 and 3.3). The filtered datasets are then used
to analyze the sensitivity of traditional metrics to the choice
of the trackers (Sect. 4). Finally, we gather the insight gained
from this analysis to consider the complementarity of dif-
ferent trackers and provide some guidelines for applying TC
trackers to model results (Sect. 5). The conclusion gives a
summary of the trackers’ common points and differences
(Sect. 6).

2 Data and methods

Our analysis combines resources available for both the
database of observed TCs, namely IBTrACS (Knapp et al.,
2010) and the ERA5 reanalysis (Hersbach et al., 2020). Be-
fore describing these two datasets in detail, we first highlight
our procedure to classify TCs according to their intensities.
We next describe the specifics of the four trackers we com-
pare in this paper, and explain our track-matching method.
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Table 1. Tropical cyclone (TC) intensity classification. Saffir–
Simpson Hurricane Scale (SSHS) thresholds are converted into
10 min sustained wind using a 1.12 conversion coefficient.

Category Saffir–Simpson Klotzbach et al. (2020)
maximum 10 min minimum sea-level

wind threshold/m s−1 pressure (SLP) threshold/hPa

0 (TS) 16 1005*
1 29 990
2 38 975
3 44 960
4 52 945
5 63 925

* This threshold is not in the original classification but has been derived by us using the
same method.

2.1 Tropical cyclone (TC) intensities and classification

The TCs are commonly classified on the Saffir–Simpson
Hurricane Scale (SSHS) with the peak 1 min near-surface
wind (generally at 10 m above the surface). This is different
from the World Meteorological Organization (WMO) stan-
dard to report the 10 min near-surface sustained wind u10.
For that reason, we have chosen to systematically convert
1 min sustained winds to 10 min sustained winds. To do so,
we applied the 1.12 coefficient provided by the IBTrACS
documentation (Knapp et al., 2010), although we note there
are some ambiguities in the precise value one should use for
that purpose (Harper et al., 2010). As a result, u10 must ex-
ceed 29ms−1 for a given structure to be classified as a TC,
while tropical storms (TS) are defined as storms for which
16ms−1 < u10 < 29ms−1. The threshold values of u10 for
each TC category are reported in Table 1.

In the present paper, we will evaluate TC intensities using
their minimum SLP. As discussed in the literature in the past
few years, the rationale behind this practice is 2-fold. First,
minimum SLP is easier to measure than u10 (Klotzbach et al.,
2020), thereby reducing the uncertainty associated with its
evaluation. It is also uniformly defined among the different
forecast agencies (Knapp et al., 2010), thereby removing the
uncertainties associated with the conversion between winds
obtained for different averaging periods such as described
above. In addition, models tend to be able to reproduce the
observed range of the minimum SLP of TCs but fail to sim-
ulate the largest wind speeds (Knutson et al., 2015; Chavas
et al., 2017). The minimum SLP is a more reliable indicator
of TC intensities than wind speeds. This is true in models, but
also for ERA5, as recently shown by Zarzycki et al. (2021).
Finally, and even if we do not tackle TC damage in this study,
it has also been argued that minimum SLP is a better pre-
dictor of TC damage than maximum wind speed (Klotzbach
et al., 2020).

Simpson and Saffir (1974) provided a version of the SSHS
categorization in terms of pressure, but it does not preserve
the proportion in categories of the wind scale. Therefore, we

rather use the classification from Klotzbach et al. (2020) to
compute TC intensity categories. It is reported in Table 1 for
completeness.

2.2 Datasets

2.2.1 IBTrACS

The IBTrACS (Knapp et al., 2010) version 4 is the most com-
prehensive database of observed TCs. We used the “since
1980” subset in the present paper (Knapp et al., 2018). It
combines data provided by TC centers of WMO, namely the
Regional Specialized Meteorological Centers (RSMCs) and
Tropical Cyclone Warning Centers (TCWCs), as well as non-
WMO centers, such as the China Meteorological Adminis-
tration, the Hong Kong Observatory, and the Joint Typhoon
Warning Center. Since IBTrACS sources are so diverse, the
database is heterogeneous and requires careful treatment be-
fore one can safely use it. The steps we followed are summa-
rized below and detailed in a workflow chart (Fig. B1).

This study considers the cyclonic seasons from 1980 to
2019 in the Northern Hemisphere (NH, 40 seasons) and from
1981 to 2019 in the Southern Hemisphere (SH, 39 seasons).
We removed seasons after 2019 because they contain provi-
sional tracks. We also filtered out all tracks labeled as “spur”
since they correspond to “usually short-lived tracks associ-
ated with main track and often represent alternate positions
at the beginning of a system [or] actual system interactions”1.
In the remaining tracks, we only kept 6-hourly time steps for
consistency with ERA5. Winds and sea-level pressure (SLP)
data were retrieved when available, prioritizing the WMO
center responsible for the relevant region. Tracks lacking
wind data (0.5 % of all tracks) were dropped. Tracks lack-
ing SLP data (7 % of TS intensity tracks) were kept but not
be included in those parts of the analysis for which storm in-
tensities are needed. Finally, we removed tracks that do not
reach the TS stage (16 ms−1) and those that last less than 1 d.

Hereafter, our selection of IBTrACS data will be referred
to as IB-TS. We also define IB-TC as the subset of IB-TS
tracks that reached the TC intensity (u10 > 29ms−1). IB-TS
(resp. IB-TC) contains 3519 (resp. 1938) tracks.

2.2.2 ERA5

We retrieved data from the fifth generation of ECMWF Re-
analysis (ERA5, Hersbach et al., 2020). Hourly estimates of
atmospheric variables are provided by ERA5 on a grid with
0.25◦ horizontal resolution from 1979 to the present day. For
the purpose of this paper, we only used 6-hourly data from
1980 to 2019 (as in IBTrACS). We made the choice of using
6-hourly data, considering our final objective, which is to use
the trackers on simulations. In simulations, as is customary,
we only have 6-hourly data available. However, we checked

1IBTrACS columns documentation
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that the difference it makes is unimportant by running part of
the tracking on 1-hourly data.

Unlike other reanalyses such as JRA-55 or NCEP-CFSR,
ERA5 does not perform any specific assimilation for TCs
(Hodges et al., 2017). Nevertheless, ERA5 has recently
been assessed as having similar performances as JRA-55 or
NCEP-CFSR for a range of metrics (Zarzycki et al., 2021;
Roberts et al., 2020a). These results motivated our choice to
use ERA5 as a test bed to benchmark the detection skills of
the four different TC trackers we will now describe.

2.3 TC trackers

In Table B1 we provide a synthesis table of the trackers’ cri-
teria and thresholds presented below.

2.3.1 TempestExtremes

TempestExtremes (see https://climate.ucdavis.edu/
tempestextremes.php, last access: 22 August 2022) has
been developed by Ullrich and Zarzycki (2017) as a
command-line software enabling a fast and versatile
implementation of TC trackers.

For the tracking of pointwise features, such as TCs, it
provides two functions: (i) DetectNodes finds candidates
“nodes” corresponding to local extrema of a given variable,
and optionally satisfying a set of additional criteria (closed-
contours, thresholds); and (ii) StitchNodes links candidates
within a given distance of one another into a track. In this
paper, we use TempestExtremes to implement two vastly dif-
ferent TC trackers, UZ and OWZ, respectively described by
Ullrich et al. (2021) and Tory et al. (2013c). We describe
both algorithms below and provide the associated codes in
Appendix C.

2.3.2 UZ algorithm

We implemented the physics-based UZ algorithm in Tempes-
tExtremes as described by Ullrich et al. (2021). The thresh-
olds were calibrated by Zarzycki and Ullrich (2017) using
sensitivity analysis to several metrics and the data of four
reanalysis products. This tracker was referred to as “Tem-
pestExtremes” in Roberts et al. (2020a, b) but we prefer to
distinguish between the framework and the tracker formula-
tion itself.

Candidate detection. The first step consists in finding the
local minima of SLP. It defines a series of candidate points. In
a second step, only those candidates that verify the following
two closed-contour criteria are retained:

i. SLP must increase by 200Pa over a distance of 5.5◦

great-circle distance (GCD) from the candidate point;

ii. Z300−500 – the geopotential thickness between 300 and
500hPa – must decrease by 58.8m2 s−2 over a distance
of 6.5◦ GCD, using the maximum value of Z300−500
within 1◦ GCD of the minimum SLP as a reference.

Criterion (i) ensures that the low-pressure region is of suffi-
cient magnitude and coherent. Criterion (ii) verifies that there
is an upper-level warm core associated with the local depres-
sion. Finally, candidates for which a stronger SLP minimum
exists within 6◦ GCD are eliminated.

Stitching TC tracks. Consecutive candidates are linked to-
gether if they lie within 8◦ GCD of one another. A maximum
24 h gap is allowed in a track, and tracks must last for at
least 54 h. Ten 6-hourly time steps (54 h) must also verify the
following additional thresholds: u10 ≥ 10ms−1, |φ| ≤ 50◦,
zsurf ≤ 150m, where φ and z stand for the latitude and the
altitude, respectively. They respectively ensure that the track
is of sufficient intensity, located close enough to the Equator,
and spends a significant fraction of its lifetime over oceans.

2.3.3 OWZ algorithm

The OWZ algorithm, presented in Tory et al. (2013c) and as-
sessed using ERA-Interim data by Bell et al. (2018) is based
on evaluating the eponymous Obuko-Weiss-Zeta (OWZ)
quantity, defined according to

OWZ=max(OWnorm,0)× η× sign(f ) , (1)

where η is the absolute vorticity, the sum of the relative vor-
ticity ζ and the coriolis parameter f , and OWnorm stands for
the normalized Obuko-Weiss parameter:

OWnorm =
ζ 2
− (E2

+F 2)

ζ 2 , (2)

in which E and F are the stretching and the shearing defor-
mation, respectively and are given by

E =
∂u

∂x
−
∂v

∂y
, F =

∂v

∂x
+
∂u

∂y
.

Candidate detection. Our implementation of OWZ in
TempestExtremes first identifies local maxima of OWZ at
850 hPa. Candidates for which a stronger OWZ maximum
exists within 5◦ GCD are eliminated. Next, only those can-
didates that satisfy the following six conditions within a
distance of 2◦ GCD of that maximum are retained (with r
and q being the relative and specific humidity, respectively,
and vws denotes the vertical wind shear between 200 and
850 hPa):

OWZ850 hPa ≥ 5× 10−5 s−1

OWZ500 hPa ≥ 4× 10−5 s−1

r950 hPa ≥ 70%
r700 hPa ≥ 50%
q950 hPa ≥ 10gkg−1

vws ≤ 25m.s−1 .

Stitching TC tracks. Consecutive TC points are stitched to-
gether when they lie within a maximum distance of 5◦ GCD
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from one another, allowing for a maximum 24 h gap. Addi-
tional core thresholds must be reached for at least 9 time-
steps (48 h):

OWZ850 hPa ≥ 6× 10−5 s−1

OWZ500 hPa ≥ 5× 10−5 s−1

r950 hPa ≥ 85%
r700 hPa ≥ 70%
q950 hPa ≥ 14gkg−1

vws ≤ 12.5ms−1 .

Finally, tracks that do not reach TS intensity (u10 = 16ms−1)
for at least 1 time step are filtered out.

Due to the specifics of the TempestExtremes framework,
we note that our implementation differs slightly from the
original algorithm described by Tory et al. (2013c). These
modifications, along with the results of a sensitivity study
justifying our choices for rthreshold and rrange, are further dis-
cussed in Appendix C.

2.3.4 TRACK algorithm

TRACK derives from an extra-tropical cyclone (ETC) track-
ing algorithm (Hodges, 1994). It is versatile and has since
been used to study many types of weather systems, including
the detection and tracking of TCs (Bengtsson et al., 2007;
Hodges et al., 2017; Roberts et al., 2020a). The rationale
behind TRACK is different from the previously described
trackers: because it aims to track all vorticity perturbations,
it does not embed any warm-core criterion in its initial fun-
damental detection. The TC selection, including the warm
core test, is only performed in the last step, independently of
the tracking. In the present paper, we used the database of
trajectories detected by TRACK in ERA5 that was recently
published by Roberts et al. (2020a) without any modification.
For completeness, we detail below the thresholds used in that
case.

The algorithm is based on ζT 63(P ) which is the relative
vorticity at pressure level P , spectrally filtered to retain to-
tal wavenumbers 6–63 only, as well as its vertical average
from 850 to 600 hPa, hereafter referred to as ζ T 63. Local ex-
trema of ζ T 63 are detected and the ones for which ζ T 63 >

5×10−6 s−1 define a series of candidate points. Neighboring
candidates are then stitched together by minimizing a cost
function for track smoothness (Hodges, 1995, 1999). The
tracks so obtained must last for at least 2 d and start between
30◦ S and 30◦ N.

The presence of a warm core is diagnosed according to the
following criteria that must be satisfied for at least 1 d over
the ocean:

1. ζT 63(850hPa) > 6× 10−5 s−1.

2. ζT 63(850hPa)− ζT 63(250hPa) > 6× 10−5 s−1.

3. A local maximum of ζT 63(P ) exists at each pressure
level.

2.3.5 CNRM algorithm

The CNRM algorithm was developed by Chauvin et al.
(2006), and later used in Chauvin et al. (2020) and Cattiaux
et al. (2020).

Candidate points are first tracked with the following crite-
ria:

1. The SLP displays a local minimum which defines the
center of the system.

2. The 850 hPa relative vorticity is larger than 1.5×
10−4 s−1.

3. The 850 hPa wind intensity is larger than 5 ms−1.

4. The sum of the temperature anomalies averaged over
the 700, 500, 300 hPa pressure levels is larger than 1 K.

5. The difference between the 850 and 300 hPa tempera-
ture anomalies is smaller than 1 K.

6. The difference between the 300 and 850 hPa wind in-
tensity is smaller than 5 ms−1.

This detection step is followed by a stitching procedure
adapted from Hodges (1994) and detailed in Ayrault (1998).
Tracks shorter than 1 d are eliminated. Once TC tracks are
obtained, a relaxation step is performed to complete the track
life cycle and to detect tracks that were cut into two or more
pieces (for example, because of a temporary weakening).
This relaxation step is done with a 850 hPa relative vortic-
ity threshold equal to 2.5× 10−4 s−1.

2.4 Tracks matching

When using reanalysis products like ERA5, detected tracks
can tentatively be associated with observed tracks (Mu-
rakami, 2014; Hodges et al., 2017; Ullrich et al., 2021).
We derived the following matching algorithm: consider the
case of a given detected track D composed of n points
(d1,d2, . . .dn) defined at times (t1, t2, . . ., tn). The observa-
tions O consist of a database of tracks and can be seen as
a collection of points at given times. For each point di(ti) of
track D, we associated those points of O at time ti that are
located closer than 300 km from the point di . Of course, it
is possible that such points do not exist in O. The subset of
points of O that have been associated with any point in D
is denoted as OD−paired. It is composed of |OD−paired| ele-
ments. There are three possibilities:

1. |OD−paired| = 0: None of the points of D has been
paired to a point in O and D is considered to be an FA.

2. |OD−paired|> 0 and all the points in OD−paired belong
to the same track DO in O: DO is considered to be the
match of D.
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3. |OD−paired|> 0 and the points in OD−paired belong to
more than one track inO: the observed track having the
largest number of points paired withD is considered the
match of D.

After this matching is completed for all detected tracks, a fi-
nal treatment is performed: if an observed track is paired with
two or more detected tracks, these detected tracks are merged
into a single track. Such cases arise when the detected track
corresponds to different parts of the same observed tracks
and occur when, for example, the TC temporarily weakened
while going over an island before strengthening again. In
Appendix D, we present a rapid analysis that validates our
method.

This matching procedure enables us to label tracks as
“Hits” (H ), “Misses” (M), and “False Alarms” (FAs). Hits
are tracks present in IB-TS and detected in ERA5. Misses
are tracks present in IB-TS that were not detected in ERA5.
False Alarms are tracks detected in ERA5 that do not corre-
spond to any track in IB-TS. We then used this labeling to
define two detection skills metrics, the Probability of Detec-
tion (POD, sometimes also presented as HR for “Hit Rate”)
and the False Alarm Rate (FAR):

POD=
H

H +M
, (3)

FAR=
FA

H +FA
. (4)

3 A common post-treatment for trackers

We used Eqs. (3) and (4) to calculate the POD and FAR of
the four trackers with respect to IB-TS. For UZ, we found a
POD of 75 % and an FAR equal to 18%. These values are al-
most identical to Zarzycki et al. (2021), who report 78% and
14% for their POD and FAR, respectively. Subtle differences
in the pre-processing of the IBTrACS data account for this
difference (Colin Zarzycki„ personal communication, 2022)
but the fact that both PODs and FARs are almost identical
validates our implementation of that tracker. For TRACK,
we found a POD of 85% and a FAR equal to 50%. Both
scores are comparable to the values reported by Hodges et al.
(2017), who applied TRACK to other reanalyses. We note
that the POD we report here is on the higher end of the val-
ues found by Hodges et al. (2017), which is consistent with
our more restrictive filtering of IBTrACS than Hodges et al.
(2017). The OWZ and CNRM trackers display PODs similar
to UZ, but their FARs are more heterogeneous and amount to
28% for OWZ and 60% for the CNRM tracker.

Overall, the results demonstrate that all trackers can cap-
ture most of the observed TCs. Although this is satisfying,
we note that a given tracker can miss up to one-fourth of the
existing tracks. In addition, as stated above, the FARs are
more heterogeneous, and FAs can account for more than half
of the detected trajectories. These two caveats call for a bet-

ter understanding of the properties of both populations. This
is the purpose of the following section.

3.1 Missing tracks and false alarm (FA) properties

Figure 1 reports several diagnostics that characterize the dif-
ferent populations (hits, misses, and FAs) detected in ERA5
by the trackers.

For practical purposes, we use the hits (blue color in Fig. 1)
as a reference against which to compare these diagnostics.
The TC intensity distribution (first row) and seasonal cycle
(third row) are similar across all trackers. The seasonal cycle
is the same as in the observations, but the intensity distribu-
tion is underestimated (see Sect. 4.4). We find some differ-
ences in the latitude at which the SLP minima are reached
(second row). The CNRM tracker distribution features sec-
ondary maxima in midlatitudes in both hemispheres that are
absent in UZ and OWZ and only barely visible in TRACK
(particularly in the Southern Hemisphere). These tracks cor-
respond to TCs that reached their maximum intensities af-
ter a post-tropical transition. The lifetimes of hits (fourth
row) also vary with trackers: UZ and the CNRM display the
shortest tracks with a distribution that peaks between 5 and
10 d, followed by OWZ with storm durations peaking at 10 d,
while TRACK tracks typically last for 15 d. We will revisit
these properties in Sect. 4.3.

Missing tracks (green color in Fig. 1) correspond to TS
or TCs that were observed and are reported in the IB-TS
database but that a given tracker did not find in ERA5. They
typically consist of weak (first row), tropical (second row),
and short-lived (fourth row) perturbations for which the am-
plitude is probably not strong enough to exceed the detection
thresholds for a long-enough time2. This is why TRACK,
with its relatively soft criteria, misses half as many tracks
as the other trackers. We also note that the latitudinal dis-
tribution of missed tracks (second row) is skewed in favor
of the Northern Hemisphere, a property they share with the
population of hits. Because they are observed as a tropical
storm, missing tracks are more numerous during the TC sea-
son of their hemisphere (third row). To conclude, the missed
trajectories seem to correspond to the weak tail of the distri-
bution of hit trajectories. Our description of missing tracks is
in agreement with Hodges et al. (2017).

The FAs (orange color in Fig. 1) correspond to pertur-
bations detected in ERA5 by a given tracker for which no
correspondence in IB-TS exists. The FA storms are not sys-
tematically weak and their intensity distributions vary across
trackers (first row). The CNRM tracker shows the most ex-

2Some care is required here: by definition, the properties of
missing tracks reported in Fig. 1 rely on the information contained
in IBTrACS, while that of hits comes from ERA5. While this is
probably not a concern for the latitudes of pressure minimum and
for the track duration, this may be more problematic for the pressure
minimum itself, as modeled TCs tend to reach weaker intensities
than observed TCs.
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Figure 1. Histograms representing the properties of the Hits, the Misses, and the False Alarm (FA) tracks for each tracking algorithm. From
left to right, the columns correspond to UZ, OWZ, TRACK, and the CNRM tracker, respectively. The rows correspond from top to bottom to
the minimum sea-level pressure (SLP, with the storm categories as defined according to Table 1 shown with vertical gray lines), the latitude at
which that value is reached, the month at which that value is reached (solid line in the Northern Hemisphere, and dashed line in the Southern
Hemisphere), and finally the track duration. The blue and green colors correspond to the Hits and the Misses, respectively, for all plots. Raw
FAs are shown in orange while we plot the FAs that remain after the post-treatment in red (see Sect. 3 for details). The histograms display
counts that have not been normalized. Hence, the area under each curve is proportional to the number of tracks in each ensemble.

treme distribution of FAs, with a peak that corresponds to cat-
egory 2 storms. By contrast, the OWZ distribution of FAs is
strongly biased toward weak category 0 storms. The UZ and
TRACK strength distributions of FAs simultaneously show
weak storms along with a significant tail of strong storms –
in the sense that the number of category 1 and 2 storms is
not negligible compared to the number of category 0 storms.
The second row of Fig. 1 suggests that these relatively strong
disturbances correspond to ETCs. Indeed, the latitude distri-
bution of the minimum SLP value shows two peaks at mid-
latitudes for UZ, TRACK, and the CNRM tracker. For the

latter, these peaks even exceed the subtropical peaks asso-
ciated with the hits. In agreement with that hypothesis, the
seasonality of FAs in UZ, TRACK, and CNRM shows that
there is an important number of storms detected during the
winter season of each hemisphere, i.e., precisely when ETCs
are numerous (Fig. 1, third row). By contrast, OWZ FAs oc-
cur during the TC season. For all trackers, the ratio of sum-
mer to winter FAs is consistent with the ratio of the peaks
observed at tropical and midlatitudes in the latitudinal distri-
bution of FAs: UZ and TRACK FAs have rather flat seasonal
cycles, and the same number of tropical and extra-tropical
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Figure 2. Top row: maps of the FA tracks color-coded according to their intensity in terms of pressure. The different columns each correspond
to a different tracker. Bottom row: same as the top row, but after the sub-tropical jet (STJ) post-treatment has been applied (see Sect. 3).

FAs. The CNRM tracker has most of its FAs during winter at
extra-tropical latitudes, and OWZ FAs mainly occur during
the TC season at tropical latitudes. Finally, FAs are generally
shorter events than hits (last row). The UZ and CNRM FAs
tracks are the shortest and last less than 10 d. The longest
tracks are the TRACK FAs and feature durations of up to a
month. The OWZ FAs can last up to 20 d. Interestingly, Bell
et al. (2018) also reported similarly long FAs while tracking
TCs in ERA-Interim with OWZ. They were then able to as-
sociate the longest FAs with observed tropical disturbances
that had been discarded from IBTrACS because they only re-
tained storms of tropical intensity and stronger, as we did in
this paper. Although we did not do the same exercise, in light
of their results, it is likely that some of the FAs we report here
also correspond to weak storms we excluded from IBTrACS.

We conclude that FAs belong to two categories: (i) strong
extra-tropical and (ii) weak tropical storm. This conclusion
is nicely illustrated and confirmed with the help of FA track
maps (Fig. 2, top row): For UZ and the CRNM tracker, FA
tracks correspond to intense storms (pink colors) that cluster
beyond 30◦ latitude. On the other hand, OWZ FAs are located
in the tropics and are weak disturbances (yellow colors). The
TRACK FA tracks are of both types: many of them are strong
extra-tropical storms, but there is also a large contingent of
weak tracks.

3.2 Post-treatment: two methods

The discussion above identified two types of FAs: weak,
short-lived TS and strong ETCs. It seems complicated to fil-
ter the weak and short-lived tracks because such a procedure
would simultaneously remove many hits and significantly
reduce the POD. For example, 24 % to 83 % of the tracks
(for TRACK and UZ, respectively) with a minimum pressure
larger than 1005 hPa are hits.

By contrast, ETCs are sufficiently different from genuine
TCs to derive a discriminating method. We note that such
an avenue for improvement has already been explored in
the past. For example, based on the fact that ETCs prefer-

entially develop in midlatitudes, some trackers use a fixed
latitude criterion to filter out some of the tracks suspected
to correspond to ETCs (see e.g., Table 1 in Chauvin et al.,
2006). Such a simple criterion may not be elaborate enough,
though. For example, it does not take into account the natu-
ral variability of the sub-tropical limit nor its potential pole-
ward shift with climate change (Arias et al., 2021). In fact,
the two trackers in this study that embed such a cut-off pa-
rameter (UZ and TRACK) still present a large number of
extra-tropical tracks, suggesting that there is room for im-
provement. An alternative option is to rely on the structural
differences between TCs and ETCs, for example, the nature
– warm or cold – of their core.

In the following discussion, we develop and analyze the
results and relative merits of both approaches. We propose
two post-treatment methods inspired by the existing litera-
ture: (1) an adaptation of Bell et al. (2018) sub-tropical jet
(STJ) cut-off, hereafter called the STJ method, and (2) an
exploitation of Hart phase space diagram (Hart, 2003), here-
after called the VTU method.

The STJ method (see Fig. 3, left panel for a graphical illus-
tration) is an environmental method that aims to establish an
objective criterion to determine whether a given disturbance
is located in the midlatitudes or the tropics. It is based on the
large-scale wind field properties at 200 hPa. First, we apply a
30 d running mean on both wind components to remove the
fast atmospheric synoptic activity. The sub-tropical jet is then

defined as the region where the wind speed
√
u2

200+ v
2
200 is

larger than 25ms−1 and the zonal wind u200 is larger than
15ms−1. At each time step, we define the maximum trop-
ical latitude for each longitude as the equatorward bound-
ary of the sub-tropical jet. For those longitudes where no
sub-tropical jet exists, the boundary latitude is linearly in-
terpolated between the two closest longitudes with an exist-
ing sub-tropical jet. Any disturbance located poleward of that
limit is assigned an extra-tropical label. We eventually filter
out tracks that feature no or only one tropical point.
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Figure 3. Illustration of the post-treatment procedures of (a) STJ and (b) VTU. Panel (a) shows a close-up map of the western North Pacific
(WNP). It displays two tracks detected by the UZ tracker that occurred simultaneously (represented using square and diamond symbols).
Also shown are the 200 hPa horizontal wind speed (red shadings), the 15 m.s−1 zonal wind contour (dark red line) and the sub-tropical jet
limit at that time as defined in Sect. 3.2 (dashed white line). Panel (b) displays both tracks in the Hart phase space diagram, also defined
in Sect. 3.2. The track represented using square symbols on both panels features more than one point equatorward of the sub-tropical jet
limit (a) and in the upper part of the Hart diagram (b). It is thus classified as a genuine TC according to both post-treatment methods. In fact,
it corresponds to Typhoon Mac (1982) as found using the track-matching procedure described in Sect. 2.4. By contrast, the track represented
with diamonds on both panels lies poleward of (a) the sub-tropical jet limit and (b) in the lower part of the Hart diagram. It is thus classified
as an ETC according to both post-treatment methods. It was indeed classified as an FA according to the track matching algorithm. Finally,
note that the gray points correspond to points that lie poleward of the sub-tropical jet limit and are therefore labeled as extra-tropical by the
sub-tropical jet method.

The VTU method (see Fig. 3, right panel for a graphical il-
lustration) is a structural method that aims to establish an ob-
jective criterion to discriminate between TCs and ETCs. Here
we use the Hart phase space diagram that plots storm trajec-
tories in a 2D diagram based on measures of the storm ther-
mal wind in the upper and lower troposphere, respectively
denoted as V UT and V LT (Hart, 2003). We used the following
relation to calculate V UT :

V UT = Pmid
1Z(Pbottom)−1Z(Ptop)

1P
,

where Ptop = 300 hPa, Pbottom = 600hPa, 1P = Ptop−

Pbottom, and Pmid = (Ptop+Pbottom)/2. The 1Z(P ) denotes
the maximum height perturbation on the isobaric surface of
pressure P within a circle of a 500 km radius centered on the
storm:

1Z(P )= Zmax(P )−Zmin(P ) .

V LT has a similar definition but with Ptop = 600hPa and
Pbottom = 900hPa. As noted by Hart (2003), storm trajec-
tories in the (V LT ,V

U
T ) plane are enlightening as to the na-

ture of the storm, and we have found that V UT is a powerful
discriminant between full-troposphere warm-core TCs and
other structures. In practice, the VTU method consists of fil-
tering out tracks for which V UT is negative for all time steps.

3.3 Post-treatment: the results

Both post-treatment schemes are effective at reducing FARs
(see Fig. 4). The STJ method removes between 11 % and
76 % (for OWZ and CNRM, respectively) of FAs, while the
corresponding reductions range from 37 % up to 68 % (for
OWZ and CNRM, respectively) with the VTU method. The
STJ reductions in FAR correspond to the proportion of extra-

Figure 4. FARs for each algorithm, before (hatched, black figures)
and after (filled, white figures) post-treatment.

tropical FAs identified in Sect. 3.1: barely any in OWZ, about
half in UZ and TRACK, and most in CNRM tracks.

In Fig. 1, we further compare the properties of the FAs be-
fore and after the STJ post-treatment, respectively with the
orange and red distributions (The effects of the VTU method
on the FA distributions are shown in Fig. B2 and are almost
identical). The large amplitudes of the tail of strong storms
and the secondary peaks at midlatitudes are significantly re-
duced for all trackers (first and second row). Both distribu-
tions are now similar to that of the hits. Furthermore, the
seasonal cycle of the filtered FAs looks more similar to that
displayed by actual TCs (third row). The visual inspection
of STJ-filtered FA tracks (Fig. 2, second row) confirms these
quantitative diagnostics and shows that the filtering proce-
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dure has dramatically reduced extra-tropical track frequen-
cies. We conclude that the STJ method fulfills its goal of se-
lectively removing ETC tracks.

The FARs after post-treatment are similar with both meth-
ods. They range from 9 % up to 36 % for the STJ method
and from 9 % up to 31 % for the VTU method (see also Ta-
ble 2). However, OWZ seems to be an exception to that rule.
While the STJ method leaves its FAR nearly unchanged, the
VTU method succeeds in removing more than one-third of its
FAs. This relatively poor performance of the STJ method at
removing OWZ FAs was to be expected. As discussed above
in Sect. 3.1, extra-tropical storms do not dominate its popu-
lation of FAs, which rather appear to be composed mostly of
weak short storms. This is most likely because OWZ already
embeds a wind shear criterion in its formulation. It probably
already detects the crossing of the sub-tropical jet, thereby re-
ducing the interest of the STJ filtering method. By contrast,
the better performance of the VTU method for that tracker
suggests that it is more efficient at identifying weak/short
FA tracks and makes it more interesting to use in combina-
tion with OWZ. Nevertheless, we note that our results are in
agreement with Bell et al. (2018), who report a decrease of
2.5 % and 4.5 % of the total tracks in NH and SH, respec-
tively, when they used an STJ-like criterion on ERA-Interim
data. In our case, we found that the STJ post–treatment re-
moves 4 % of all the OWZ tracks. The detection scores ob-
tained for OWZ after the STJ post-treatment are also close to
those obtained by Bell et al. (2018) with ERA-Interim, i.e., a
73 % POD and 19 % FAR.

As mentioned above, a desired property of any post-
treatment procedure is to leave the POD unaltered. We found
that the two methods display some differences (see Fig. 5).
While the STJ method only reduces the POD by 1 % at most
for all trackers, the VTU method has a larger impact: PODs
decrease from 3 % (for TRACK) to 7 % (for the CNRM
tracker). The VTU post-treatment even removes up to 4 %
of TC-strength hits in UZ and CNRM. For this reason, we
only present results obtained using the STJ method in the
remainder of this paper. It does not mean that the VTU post-
treatment should always be discarded. As opposed to the STJ
method, it only requires information about the local and in-
stantaneous properties of the flow. The VTU method is thus
simpler to implement than the STJ method. This relative sim-
plicity has a price to pay in terms of a modest decrease of
PODs that one should be aware of.

In addition to filtering out ETCs, the post-treatment meth-
ods described above allow us to label extra-tropical points in
the remaining tracks. These extra-tropical points are then ex-
cluded when computing the intensity statistics of the tracks
(see Sect. 4). This “free bonus” of the post-treatment step re-
moves potential biases in the metrics that would result from
TC tracks that reach their maximum intensity after perform-
ing a post-tropical transition.

Table 2. Probability of detection (POD) and false alarm rate (FAR)
of the four trackers used in this paper with respect to IB-TS.

Tracker UZ OWZ TRACK CNRM

POD 74 % 76 % 84 % 74 %
FAR 9 % 25 % 36 % 15 %

4 Results

We now analyze the properties of the database of ERA5
tracks that we obtained after the post-treatment described
above, focusing on the differences between trackers. We first
revisit the detection skills of trackers (Sect. 4.1). We then
discuss the sensitivity of the metrics introduced by Zarzycki
et al. (2021) in Sect. 4.2 and thereafter relate these sensitiv-
ities to the different tracks’ duration as captured by the four
trackers (Sect. 4.3) and to the intensity distribution of the re-
analyzed storms in ERA5 (Sect. 4.4).

4.1 Trackers’ detection skills

For completeness Table 2 summarizes the filtered trackers’
detection skills that were extensively discussed in the pre-
vious section. The PODs are almost unchanged compared
to the values discussed in Sect. 3 before post-treatment, and
the FARs are as shown in Fig. 4 for the STJ method. Over-
all, these numbers illustrate the trade-off between FAs and
misses: improvements of the POD tend to occur at the cost
of an increase in the FAR.

However, these numbers are global averages and hide a
significant regional variability. This variability is illustrated
in Fig. 5 (top row), which decomposes the numbers of hits,
misses, and FAs by oceanic basins3. First, we note that the
hits’ geographical distribution is similar across trackers: they
are more numerous in the western North Pacific (WNP), fol-
lowed by the South Indian (SI), the eastern North Pacific
(ENP), and finally the South Pacific (SP) and North Atlantic
(NATL) which features almost the same number of TCs. The
geographical distribution of misses is not identical to that of
the hits and varies among trackers. This variability translates
into POD values than can strongly deviate from the mean
(Fig. 5, bottom row). For example, the POD in the NATL is
smaller than the global average by 10% for all trackers and
only reaches 58% for UZ. Misses are also more numerous
in the ENP, although with contrasted results among track-
ers: while UZ, OWZ, and CNRM PODs roughly equal 60%,
it amounts to 80% for TRACK, i.e., close to its global av-
erage. We find similar figures for North Indian (NI). These
problems are balanced by POD scores that are systemati-
cally larger than the global averages for WNP, SP, and SI
oceans, where the PODs are larger than 80%. With almost

3Here and in the remainder of the paper, oceanic basins are de-
fined following the appendix guidelines of Knutson et al. (2020).
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Figure 5. Upper panel: Hits, misses and FA total numbers per oceanic basin. From left to right, the different panels correspond to UZ, OWZ,
TRACK and the CNRM tracker, respectively. Lower panel: POD and FAR for each tracker in each basin (bars) compared to the global mean
(lines). Basin abbreviations are defined as follows: western North Pacific (WNP), eastern North Pacific (ENP), South Pacific (SP), North
Indian (NI), South Indian (SI), North ATLantic (NATL), and South Atlantic (SA).

Table 3. Frequency, TC days, ACE and latitude of minimum pres-
sure (φPmin ) in the observations, and bias in ERA5 depending on
the tracker used. The last two lines show the mean and the standard
deviation of the bias with regard to the trackers.

Frequency TC days ACE φPmin
yr−1 d yr−1

×104 m2 s−2 yr−1 ◦lat

Observations 88 776 168 20

UZ −16 −334 −107 0.6
OWZ 1 50 −91 0.9
TRACK 27 731 −92 −2.3
CNRM −12 −310 −106 0.9

Mean bias 0 34 −100 0
σ 20 496 8 1.6

two-thirds of the world’s TCs occurring in the WNP and SI
oceans, these two basins largely account for the global aver-
ages reported in Table 2.

Similarly, the geographical distribution of FAs does not
necessarily follow that of the hits and is heavily weighted
by the WNP value. In this basin, the FAR is equal to 8%
and 10% for UZ and the CNRM trackers, respectively, and
largely explains the low FARs for these two trackers. It
amounts to 20% and 30% for OWZ and TRACK, also re-
flecting their global average values. In many of the other
basins, FARs are much worse than their global averages and
often exceed 40%. This is particularly true for the southern
oceanic basins and NI ocean. In fact, regional FARs smaller
than the global mean are an exception rather than the rule.

Figure 6. Regional distribution of (a) frequencies and (b) TC days
for each tracker and in the observations. Basin abbreviations are as
defined in Fig. 5.

4.2 Metrics sensitivity

We now take a different view of assessing the properties of
the detected tracks as an ensemble composed of the hits and
FAs aggregated together. We compare them with the proper-
ties of the observed tracks as derived from IBTrACS. Such
an approach would be more appropriate when using trackers
to evaluate model results as opposed to reanalysis for which
detection scores can be calculated.
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To do so, Zarzycki et al. (2021) suggested using a se-
ries of standard metrics as a means to evaluate the perfor-
mance of a system in simulating tropical storms against an
observed reference. Using the UZ tracker (albeit without the
post-treatment method described above), they applied it to
several reanalysis products. Here, we take a complementary
viewpoint and use a subset of their metrics to evaluate the
performances of several trackers against a single reanalysis
product. Table 3 reports the bias we measured for each of
these metrics and for each of the trackers with respect to IB-
TS.

The global storm frequencies – i.e., the total number of
storms detected per year – vary among trackers and reflect
their different sensitivities: UZ and the CNRM tracker are
the most selective and display a negative bias. TRACK is the
most sensitive tracker and has a positive bias. The behavior of
OWZ is intermediate and features a very small bias. Perhaps
more important than their absolute value is the fact that the
standard deviation of biases (σ = 20 yr−1) amounts to more
than 20% of the observed track frequency. It is also com-
parable to the dispersion of track frequencies of 18.3 yr−1

reported by Zarzycki et al. (2021) in their analysis of a series
of reanalysis products with a single tracker. This comparison
indicates that uncertainties associated with using a single re-
analysis product are as large as those associated with using a
single tracker.

Zarzycki and Ullrich (2017) and Zarzycki et al. (2021) ad-
vocate using more integrated metrics, such as the total num-
ber of days featuring TCs, also referred to as TC days. We
recover biases of the same sign as that of the frequencies
for that metric. For UZ, the bias is very different in both
its sign and amplitude from the value reported by Zarzycki
et al. (2021). This is because we consider the entire trajecto-
ries reported in IBTrACS, while Zarzycki et al. (2021) only
included storms of TS strength (i.e., with u10 > 16 m s−1).
The observed number of TC days that they calculated is thus
smaller than the values we report in Table 3, explaining the
differences between the biases. Even if the number of TC
days is an integrated metric, its scatter among the different
trackers is even larger than found for the frequencies and
amounts to 63% of the IB-TS value. This large scatter is due
to the fact that TC days multiplies TC frequencies with track
duration. As already discussed in Sect. 3.1, the latter is vari-
able among trackers, and that variability is positively corre-
lated with trackers’ sensitivities: tracks durations increase for
sensitive trackers. We will revisit that aspect in Sect. 4.3.

As already mentioned in Sect. 4.1, there is significant re-
gional variability of the POD and FAR. This is also the case
for the aggregated catalog (hits plus FAs), as illustrated in
Fig. 6 (top row), where we also compare our results with
both IB-TS and IB-TC. First, we note that TCs’ frequency
biases with respect to IB-TC are positive for all trackers and
all basins. The comparison with IB-TS is more variable. We
recover the negative biases in frequencies of UZ and CNRM
for all basins, although with different amplitudes: it is large

in the ENP but nearly vanishes in the SI and SP oceans. Sim-
ilarly, OWZ features smaller biases but with different signs
depending on the basins and occasionally displays large val-
ues, for example, for the ENP. The TRACK biases also tend
to be positive and large, in line with the global positive bias,
except for NATL. The low POD we already noticed in that
basin is not compensated by FAR, and the number of detected
tracks remains smaller than observed, even for that sensitive
tracker. Surprisingly, this is also the only basin where OWZ
outnumbers TRACK. Concerning TC days, the geographi-
cal distribution (Fig. 6, bottom row) visually confirms the
larger scatter for that metric than for the frequencies. How-
ever, the biases with respect to IB-TS appears to be more ho-
mogeneous, with large negative biases obtained for UZ and
CNRM, a small bias for OWZ and large positive biases for
TRACK, occasionally showing TC days larger by more than
a factor of 2 compared to the observed value, as is the case
for example in the SI and SP oceans and for ENP. This con-
sistency between the regional and global biases also mani-
fests itself in the good spatial correlations between the ob-
served and detected catalogs. In agreement with Zarzycki
et al. (2021), we indeed found a correlation coefficient of
0.97 between UZ and IB-TS, while we obtained similar al-
beit slightly smaller values of 0.93, 0.85 and 0.96 for OWZ,
TRACK and the CNRM, respectively.

Table 3 also reports the values of the accumulated cyclone
energy (ACE), which is a measure of the storms’ maximum
kinetic energy:

ACE= 10−46u2
10,max, (5)

where u2
10,max is the maximum 10 m wind speed reached by

each of the tracks and the sum is over the total number of
detected or observed tracks. In agreement with Zarzycki et al.
(2021), the ACE bias is negative for UZ as well as for the
other trackers. The values are also much more homogeneous
because ACE is heavily weighted by the more powerful TCs
for which the different trackers agree. We will revisit that
point in Sect. 4.4.

Finally, the latitudes of minimum pressure φPmin is well
represented in ERA5 (Table 3, last column). The UZ bias is
smaller than reported by Zarzycki et al. (2021) and the actual
value of φPmin is closer to the observed value. This reduction
is a consequence of the removal of extra-tropical tracks by
the post-treatment. Before filtering, we indeed found a bias
in φPmin equal to 3.5◦. This is also in agreement with the inter-
pretation of Hodges et al. (2017), who found positive biases
for a large number of reanalyses when using TRACK. In our
case, we note that TRACK is the only tracker with a neg-
ative bias, a fact we attribute to the post–treatment as well,
and to the large number of FAs. The latter are mostly com-
posed of short and weak storms that preferentially develop
equatorward of the population of hits.
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Figure 7. Normalized distribution of track duration for all tracks
detected by each tracker, after the STJ filtering, compared to IB-TS.

4.3 Track duration

In Sect. 4.2, we argued that the increased scatter for TC days
compared to that of the frequencies was due to the differing
track durations detected by the different trackers (see also
Sect. 3.1, which highlights that issue for the hits). Figure 7
shows that this is indeed the case: track durations are ranked
according to the tracker sensitivity, and the corresponding
distributions are found to peak at 5, 6, 8, and 12 d for UZ,
the CNRM, OWZ, and TRACK, respectively. Hodges et al.
(2017) already showed such long TRACK storm durations
for other reanalyses products. We find here that they are also
longer than IB-TS tracks. The durations of OWZ tracks are
closest to the observations, while UZ and CNRM tracks are
shorter than IB-TS tracks.

To illustrate that point further, we can compare the first
and final dates of detected and observed tracks (Fig. 8). This
comparison demonstrates that durations of tracks are homo-
geneous across oceanic basins. The only exception may be
the WNP, where the results suggest a tendency for UZ and
the CNRM tracker to detect tracks later than other oceanic
basins. In general, TRACK detects the most extended TC
life cycle: 50 % of its tracks start 4 d or more before the
first IBTrACS record and terminate 2 d or more after the
last IBTrACS record. Figure 8 also shows that three-quarters
of OWZ tracks start before IBTrACS but present a reduced
ability to follow a track after its recurvature. The UZ and
CNRM tracks are very similar to the IBTrACS ones, al-
though slightly shorter in general. These results may sound
surprising at first because they appear to disagree with Fig. 7
where we found that OWZ tracks correspond to IB-TS while
UZ and CNRM tracks were significantly shorter. The differ-
ence is due to the FAs: necessarily, Fig. 8 is restricted to
matching tracks, i.e., to the hits. As discussed above, FAs
are mainly composed of short and weak tracks, which reduce
the mean duration of the trackers’ trajectories, explaining the
differences between the two figures. Interestingly, we note

that the two dynamics-based trackers in our study share the
capacity to detect the storms early in their development.

One can use the ability of TRACK – and, to a lesser extent,
OWZ – to detect storm tracks early in their life cycle to study
the genesis locations of TCs. For example, in the NATL, al-
though the exact role of African easterly waves (AEW) is still
debated (Patricola et al., 2018), there is a correlation between
AEW and cyclogenesis (Landsea, 1993; Avila et al., 2000).
It is therefore interesting to be able to probe the early parts
of TCs life cycles. In IBTrACS, the first reported point of
TC tracks tends to be located in the eastern central Atlantic
ocean, in agreement with the tracks detected in ERA5 by UZ
(Fig. 9, left and right panels). By contrast, TRACK’s genesis
locations extend further east and well over the African con-
tinent (Fig. 9, middle panel), i.e., well into the region where
AEWs develop. These differences in genesis locations illus-
trate TRACK’s ability to follow the vorticity perturbations
that later transform into genuine TCs from very early on, and
potentially to associate these early perturbations with known
atmospheric phenomena. In this regard, OWZ is a middle
ground between TRACK and UZ (Fig. 8, left panel), and is
able to find some precursors over land (Fig. B3). The CNRM
tracker is very similar to UZ, except it catches some precur-
sors over land, probably because of its specific relaxation
step that only takes vorticity into account. This property of
TRACK and OWZ opens the way for studying the correla-
tion between NATL TC genesis and AEW in ERA5, in the
spirit of studies such as conducted by Thorncroft and Hodges
(2001); Hopsch et al. (2007) and Duvel (2021). It would be
interesting to further exploit that property by performing sim-
ilar studies of TC precursors in other oceanic basins system-
atically, especially in the context where some of the uncer-
tainty related to climate-change projections of TC activity is
due to the lack of understanding of TC seeding and whether
it is a driver of the natural variability of TCs (Vecchi et al.,
2019).

4.4 Intensity

Section 4.2 reported a large and negative bias of ACE for all
trackers. This is because the intensity distribution of reana-
lyzed TCs is different from the intensity distribution of ob-
served TCs (Fig. 10). For all trackers, there is a negative bias
for storms of category 2 and larger and an excess of weak
storms of categories 0 and −1, which is due to both FAs and
hits reanalyzed in ERA5 with a weaker intensity than ob-
served. The two biases compensate so that the overall TC fre-
quencies are comparable in ERA5 and IBTrACS. The diffi-
culty of models in general to simulate strong cyclones is well
known (Roberts et al., 2015; Manganello et al., 2012; Stra-
chan et al., 2013; Davis, 2018). It is often illustrated using
so-called wind–pressure diagrams such as shown in Fig. 11
for UZ (the wind–pressure diagrams obtained using the other
trackers are almost indistinguishable). In agreement with the
ACE negative bias and with Fig. 10, Fig. 11 confirms that
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Figure 8. Delay between the first (last) detection by each of the trackers and the first (last) record for the corresponding storm in IBTrACS is
presented on the left (right) panel. The different colors correspond to different basins, whose abbreviations are as defined in Fig. 5. Boxplots
display 25th, 50th, and 75th percentiles, whiskers display 10th and 90th percentiles, outliers are not shown.

Figure 9. First observed/detected points in IB-TS, TRACK and UZ. Top row shows the first points along with the corresponding density.
Bottom row overlays IB-TS tracks’ first point with ERA5 tracks’ first point as detected tracks by TRACK (second column) and UZ (third
column).

Figure 10. Annual frequency depending on the pressure category in
IBTrACS (black bars), and as found by each tracker in ERA5. The
colored dots show the result of each tracker and the mean is repre-
sented with the white bar. The −1 category corresponds to tracks
that did not reach the 1005hPa threshold for category 0.

Figure 11. Wind–pressure relationship in IB-TS and in ERA5 (UZ
tracking).
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detected TCs are weaker than observed. They do not fol-
low the same wind–pressure relationship as seen in the ob-
servations. In ERA5, the maximum wind speeds of TCs are
even more dramatically reduced than the minimum pressure
of TCs compared to the observations. The problem is not spe-
cific to ERA5. It is encountered in all reanalyses, especially
in ERA5’s predecessor, ERA-Interim (Hodges et al., 2017;
Schenkel and Hart, 2012; Murakami, 2014; Bell et al., 2018).
Zarzycki et al. (2021) report an improvement from ERAI to
ERA5 in terms of ACE, but it is obvious from Figs. 10 and
11 that ERA5 remains heavily biased.

Figure 10 also reveals that all trackers agree very well for
intense TCs of category 2 and above, so the following result
holds: all of the detected strong cyclones are detected by all
trackers, all of the detected strong cyclones are hits (see the
red distributions in the first row of Fig. 1), and there are no
FAs among the detected strong cyclones (see the green distri-
butions in the first row of Fig. 1). The spread between track-
ers is only due to FAs and misses of weak tropical storms.

5 Discussion

Now that we better understand what each tracker entails, we
can discuss the benefits of using them in isolation or simul-
taneously.

We found that the use of Venn diagrams, such as shown
in Fig. 12, is an interesting method to build a quick and ro-
bust intuition about the similarities and differences between
the different trackers. They immediately identify the com-
mon detections between two algorithms and their respective
FAs and misses. First, the most obvious result is that there
is a large pool of observed TCs that all trackers detect: there
are 3510 tracks in total in IB-TS and about 2400 of them are
detected by all trackers, regardless of the Venn diagram con-
sidered. This result is simply graphically reflecting the large
PODs we found for all trackers. Second, Fig. 12 (first dia-
gram) shows that UZ and CNRM are nearly identical: the
number of detections they have in common vastly outnum-
bers the number of tracks detected by one tracker without
being detected by the other. This overlap explains the sim-
ilar properties noted above for these trackers, both for the
globally integrated metrics and properties and for the geo-
graphical distributions of detected TCs. We conclude that UZ
and CNRM are essentially identical as far as tracking TCs
is concerned. Third, these diagrams also nicely illustrate the
increasing sensitivity of the different trackers: OWZ is more
sensitive than UZ and the CNRM tracker (second diagram)
but is itself less sensitive than TRACK (third diagram). Both
diagrams also highlight the increasing number of FAs with
sensitivity already discussed above.

Below we review the different lines of arguments that
could be taken into account for the choice of tracking
method. In particular, we keep in mind our objective to ap-

Figure 12. Venn diagrams representing common tracks between
each algorithm and IB-TS. The figures in the circles are the an-
nual frequency of each group. Venn diagrams are used to show log-
ical relations between sets. Each set of tracks is represented by a
circle, whose area is proportional to the size of the set – i.e. the
number of tracks. The different circles superpose on an area pro-
portional to the number of tracks that each ensemble have in com-
mon. We used the matplotlib-venn package in Python, available on
PyPI (https://pypi.org/project/matplotlib-venn/, last access: 22 Au-
gust 2022) to draw the Venn diagrams.

ply these trackers to simulation outputs for which we cannot
make a pointwise comparison with observations.

It would be tempting to aggregate the four trackers’ cata-
logs. For example, using the union of all trackers would max-
imize the POD up to 92 %, with the common 8% of observed
storms missed by all trackers corresponding to the weakest
and shortest IB-TS storms. However, it would also increase
the FAR to 42 %. The opposite approach of using the inter-

https://doi.org/10.5194/gmd-15-6759-2022 Geosci. Model Dev., 15, 6759–6786, 2022

https://pypi.org/project/matplotlib-venn/


6774 S. Bourdin et al.: Intercomparison of four tropical cyclones detection algorithms on ERA5

section of all trackers would reduce the FAR down to 6 %,
but also cut the POD down to about 65 %. Obviously, none
of these simple approaches is ideal by themselves. Similarly,
considering the mean value of the metrics might seem attrac-
tive: for example, in our case, the mean value of the storms’
frequencies features an almost vanishing bias (see Table 3).
But as shown by the large associated scatter, this is not sig-
nificant and only the result of our specific choice of trackers.
This approach, though, helps to identify aspects of the de-
tected trajectories that are robust (i.e., tracker-independent).
As shown above, this is the case for the negative ACE bi-
ases, which result from intrinsic difficulties for TCs to am-
plify enough in models and reanalyses.

An alternative might be to choose the “best” tracker based
on its ability to minimize a given metric or a set of metrics.
For example, OWZ minimizes the bias on frequency and TC
days (Table 3). This is because, for OWZ, the number of
missing TCs is almost equal to the number of FAs. In addi-
tion, FAs and missing storms have similar global properties
in terms of intensity, latitude of pressure maximum, seasonal
cycle, and track durations (compare the red and green distri-
butions in Fig. 1). It means that, on the global scale, FAs can
be thought of as a substitute for the misses. This property of
OWZ was already noted in ERAI by Bell et al. (2018) and ap-
pears to hold here for the particular case of ERA5. However,
we caution that this nice global agreement hides a significant
regional variability. For OWZ, the number of missing TCs
largely outnumbers the number of FAs in the ENP, a bias
that is compensated by the larger number of FAs in both the
SI and SP oceans (see Fig. 5). These differences point to re-
gional biases, and it is difficult to anticipate how and whether
these biases would translate in any numerical simulation.

Another interesting approach is to exploit the respective
strengths of the trackers and combine two of them. The fourth
Venn diagram in Fig. 12 illustrates such a possibility: the idea
is to combine the low FARs of UZ with TRACK’s ability to
follow the extended life cycles of TCs. Combining UZ and
TRACK hits only reduces the POD to 70% but retains UZ’s
low FARs. By removing TRACK FAs, which are frequent
and close to the Equator, this approach could give stronger
support to an analysis of the link between NATL TCs and
AEW, such as illustrated in Fig. 9, and still benefit from
TRACK’s ability to probe the early trajectories of TCs be-
fore they are amplified enough to be detected by UZ.

There could be cases for which one is only interested
in the strongest tracks. In such cases, the detection skills
of all trackers are identical and nearly perfect. As already
described above, no detected track beyond category 2 (in-
cluded) is an FA, and TCs observed with category 4 or 5
are found whatever the tracker. In this case, other properties
might become more important, such as the ability to track a
larger part of the life cycle provided by OWZ and TRACK.

Another consideration regards the resolution-
(in)dependence of the tracking method, or its performance
at a given target resolution. Here, the target resolution

was that of ERA5, which is about 30 km. The trackers we
used either claim to be resolution-independent, or were
calibrated at reanalyses with similar resolution, so that
the target resolution here is supposedly optimal. It is not
guaranteed that any of these trackers will behave similarly
at resolutions much lower or much higher than those of
ERA5. In particular, trackers embedding a wind threshold
might be particularly sensitive to resolution (Walsh et al.,
2013). There are also situations for which one would want
to assess a set of simulations with a wide range of horizontal
resolutions, and for which a resolution-independent method
would be preferred. Even though there are arguments in the
literature that dynamics-based trackers – e.g., TRACK, OWZ
– might be less dependent on resolution than physics-based
methodologies (Tory et al., 2013a, b; Raavi and Walsh,
2020), there is no quantitative assessment of this property.
In general, we are lacking a quantification of the range of
resolutions for which trackers are valid, with or without
retuning.

Finally, Table 4 provides practical considerations on the
implementation of each tracker. The UZ tracker is imple-
mented using the TempestExtremes command-line software,
which is easily parallelizable using MPI, a fully open source.
We also benchmarked UZ on 1-hourly data, proving that the
computation time scales linearly with temporal resolution.
The OWZ necessitates two steps: the first is the computation
of the OWZ variable, which is done in Python, and the sec-
ond is the tracking itself, done here with TempestExtremes
(and therefore parallelized using MPI as well). The code for
OWZ is provided along with this paper. TRACK is run using
shell scripts that read input from text files and run the FOR-
TRAN code. Since it performs spectral filtering, it needs to
be run globally, and because of the stitching step that is not
independent, it is tricky to split it in the middle of a TC sea-
son. Therefore, the embarrassingly parallel potential is lim-
ited to parallelizing over the years. TRACK code is not open
source but available upon request. The CNRM tracker is also
implemented in FORTRAN, interfaced with shell scripts. It
does not have any parallelization implemented so far, but it
can be used embarrassingly parallel over space or time. In
terms of computation time, if no parallelization is used, UZ,
OWZ, and TRACK are roughly equivalent, while CNRM re-
quires about twice as much time. The best potential for par-
allel acceleration is presented by UZ, followed by OWZ, al-
though with a slightly reduced potential because the Tempes-
tExtremes part corresponds to two-thirds of its processing.

6 Conclusions

In the present paper we have applied four tracking algorithms
to ERA5 over the period 1980–2019. These trackers are UZ
(Zarzycki and Ullrich, 2017; Ullrich et al., 2021), OWZ
(Tory et al., 2013b; Bell et al., 2018), TRACK (Hodges,
1994) and the CNRM tracker (Chauvin et al., 2006). The
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Table 4. Comparison of the different trackers’ implementations. Computation times are orders of magnitude of the time necessary to sequen-
tially track TCs in one hemisphere over 1 year. They might vary with different machines and setups. (* Kevin Hodges, personal communica-
tion, 2022)

UZ OWZ TRACK CNRM

Implementation TempestExtremes
(Command-line)

Python
+ TempestExtremes

Parameters files
and shell scripts
interfacing FORTRAN

Shell scripts
interfacing FORTRAN

Computation time 30 min 13 min
+ 20 min

40 min* 1 h 30

Parallelization available MPI MPI Embarrassingly parallel
over each year.

Embarrassingly paral-
lel
over time and space.

Open source Yes Yes No No

PODs evaluated against IBTrACS range from 75 % to 85 %,
and the FARs vary between 19 % and 60 %. Tracks missed by
the trackers mostly correspond to weak tropical storms. One
possibility is that missing tracks correspond to storms that
were not reanalyzed with sufficient intensity in ERA5. The
false alarms correspond to either weak tropical disturbances
or extra-tropical cyclones. We derived two objective filtering
methods to target these extra-tropical false alarms. The first
one is based on the environment of the tracks, i.e., it relies on
the relative positions of the detected tracks and the upper tro-
posphere sub-tropical jet (STJ). The second one is based on
the third Hart phase space parameter, the upper-level thermal
wind (VTU), i.e., it allows us to determine whether the core
of the storm is warm or cold. Both post-treatments can be
applied identically to any catalog of TC tracks. For the four
trackers we used for this study, we found a dramatic reduc-
tion of FAs for all trackers except OWZ: FARs range from 9
to 36 % after post-treatment, which correspond to reductions
of up to 76 %.

We then studied how several traditional metric biases de-
pend on the choice of the tracker. The TC frequencies are
highly sensitive to the algorithm. This is consistent with the
study of Horn et al. (2014), who found that the intensity
threshold drives the difference of TC frequencies found us-
ing several physics-based trackers. Our analysis shows that
this is true when including dynamics-based trackers as well.
The number of TC days also varies with the algorithm, i.e.,
tracks’ mean duration is smaller than the observation for UZ
and CNRM, similar for OWZ, and longer for TRACK. Both
metrics’ sensitivity reflects the large variability in trackers’
selectivity regarding weak storms. They are also consistent
with Raavi and Walsh (2020), who found that the CSIRO
tracker features simultaneously lower TC frequencies and
shorter tracks than OWZ. However, other metrics do not suf-
fer from that variability. The ACE is almost uniform across
trackers because it is mostly sensitive to the strongest TCs,
for which all trackers agree.

It should be noted that these global scores are heavily
weighted by the most active oceanic basin, namely the WNP
ocean. The TC frequencies in that particular basin compare
well with the observations and the scatter across trackers re-
mains moderate (Fig. 6). This is more of an exception rather
than the rule. In the SI and SP oceans, TRACK bias in TC
frequency is positive and large, while the other trackers are
close to IB-TS. In the ENP, TRACK bias in TC frequency is
small, while the other trackers’ biases are negative and large.
The NATL ocean is peculiar because all trackers feature neg-
ative biases. Contrasted results are also found for the num-
ber of TC days. They are not easy to understand. They may
result from inhomogeneities in IBTrACS due to differences
in reporting methods by each agency and/or from inhomo-
geneities in ERA5 because of the varying amount and den-
sity ofthe observations available for assimilation. Moreover,
TCs may have different intrinsic properties in the different
oceanic basins. It will be interesting to investigate whether
these geographical differences hold in model results in order
to disentangle these alternatives.

Finally, it is important to keep in mind that deriving de-
tection scores implicitly implies that some sort of Boolean-
reality threshold exists between what is a TC or not. Of
course, this is not the case in reality where these meteorologi-
cal systems form a continuum. Hence, any attempt to catego-
rize them is intrinsically somewhat arbitrary. In the same way
that classification based on satellite imagery or fixed wind
thresholds is, to some extent, subjective, trackers’ thresh-
olds are arbitrary and artificially create a strict limit in the
gray zone that separates tropical disturbances, storms, and
cyclones. One should not forget that these limits are track-
ers’ design choices that reflect the goals of their designers.
OWZ was created to study precursors and to be resolution-
independent (Tory et al., 2013b). TRACK aims to detect all
vorticity perturbations, while TC identification is secondary
(Hodges, 1994). The UZ and the CNRM trackers were cal-
ibrated using a series of observed metrics in the reanalyses
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(Zarzycki and Ullrich, 2017). These design choices are re-
flected in past and present results and will affect future anal-
yses of both reanalyses and models.

Appendix A: List of abbreviations

TC tropical cyclone
TS tropical storm
SLP sea-level pressure
SSHS Saffir–Simpson Hurricane Scale
NH Northern Hemisphere
SH Southern Hemisphere
IBTrACS International Best Track Archive for

Climate Stewardship
IB-TS Tropical storm subset of IBTrACS
IB-TC Tropical cyclone subset of IBTrACS
ERA5 Fifth European ReAnalysis
UZ Ullrich & Zarzycki
OWZ Obuko-Weiss-Zeta
CNRM Centre National de Recherches

Météorologiques
FA false alarm
FAR false alarm rate
POD probability of detection

ETC extra-tropical cyclone
NATL North Atlantic
WNP western North Pacific
ENP eastern North Pacific
SP South Pacific
NI North Indian
SI South Indian
ACE accumulated cyclonic energy

Appendix B: Supplementary figures and tables

Figure B1. Workflow chart describing the treatment of the IB-
TrACS database in out study. The 1.08 coefficient to convert 3-min
sustained winds to 10-min sustained winds was obtained using a
linear regression on the data for which we had both.
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Table B1. Synthesis of the trackers’ criteria. All subscripts except 10 correspond to pressure levels in hPa.

DetectNodes (or equivalent)

Local extremum Candidates’ criteria Merge distance

UZ SLP minimum SLP closed contour 2 in
5.5◦ GCD
Z300−500 closed con-
tour −58.8 m2s−2 in
6.5◦ GCD

6◦

OWZ OWZ850 maximum OWZ850 ≥
5× 10−5 s−1

OWZ500 ≥
4× 10−5 s−1

r950 ≥ 70%
r700 ≥ 50%
q950 ≥ 10gkg−1

vws≤ 25ms−1

5◦

TRACK ζT 63 maximum ζT 63 ≥ 5× 10−6 s−1 –

CNRM SLP minimum ζ850 ≥ 1.5× 10−4 s−1

u850 ≥ 5ms−1∑
700,500,300T̄ ≤ 1K

T̄850− T̄300 ≤ 1K
u300− u850 ≤ 5ms−1

10 grid points

StitchNodes (or equivalent) Relaxation

Maximum Maximum Minimum Additional Criteria
distance gap duration criteria duration

UZ 8◦ GCD 24 h 10 time steps (54 h) u10 ≥ 10 ms−1

|φ| ≤ 50◦

z ≤ 150 m

54 h –

OWZ 5◦ GCD 24 h 9 time steps (48 h) OWZ850 ≥ 6× 10−5 s−1

OWZ500 ≥ 5× 10−5 s−1

r950 ≥ 85%
r700 ≥ 70%
q950 ≥ 14g kg−1

vws≤ 12.5ms−1

u10 ≥ 16ms−1

9 time steps (48 h)

1 time step –

TRACK – None 8 time steps (2 d) ζ850 ≥ 6× 10−5 s−1

ζ850− ζ250 ≥ 6× 10−5 s−1

ζ850,700,600,500,250 ≥ 0 s−1

|φfirst| ≤ 30◦

4 time steps (1 d) –

CNRM – None 4 time steps (1 d) – – With ζ ≥ 200×
10−6 s−1
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Figure B2. Same figure as Fig. 1, but for the VTU post-treatment: characterization of the FAs of each algorithm. The first line of distributions
correspond to the minimum SLP, the second line to the latitude of the pressure minimum, and the third line to the track duration. In all plots,
blue distribution correspond to the hits, orange to the FAs before the VTU post-treatment, and red to the FAs remaining after the VTU
post-treatment.
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Figure B3. Extension of Fig. 9 for all four trackers. First observed/detected points in IB-TS, TRACK, and UZ. The left column shows the
first points along with the corresponding density. The right column overlays IB-TS track’s first point with ERA5 track’s first point as detected
tracks by each tracker.
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Appendix C: TempestExtremes code and OWZ
adaptation

C1 UZ

The code for UZ is exactly the same as in Ullrich et al.
(2021), we only adapted it to our own data infrastructure.

Listing C1. DetectNodes code for UZ.

Listing C2. StitchNodes code for UZ.

C2 OWZ

For this study, we adapted the OWZ algorithm presented in
Sect. 2.3 to be used in the TempestExtremes framework (Ull-
rich and Zarzycki, 2017; Ullrich et al., 2021). Doing so in-
volved a change in part of the methodology, and the arbitrary
choice of some criteria that are required by the TempestEx-
tremes framework.

C2.1 Original algorithm

In Bell et al. (2018), the OWZ algorithm applied on ERA-
Interim data is described as follows:

1. Each grid point at each time step is assessed based on
the initial threshold values.

2. Clusters (or “clumps” in Tory et al., 2013b) are formed
by gathering neighboring points that satisfy the initial
thresholds and that are supposed to represent a single
circulation at that point in time.

3. Circulations from step (2) are linked through time by
estimating their position in relation to the circulation’s
expected position based on an averaged 4◦× 4◦ steering
wind at 700 hPa.

4. Tracks are terminated when no circulation match is
found in the next 2 time steps within a latitude-
dependent radius (∼ 350 km).

5. Tracks are declared TC if the core thresholds are satis-
fied for five consecutive 12 h periods.

The thresholds are provided in their Table 1.
Tory et al. (2013b) further specifies that “clumps in close

proximity are reduced to one clump by discarding the weaker
or smaller clumps”, and that each clump must satisfy a set of
clump conditions: “a minimum size limit, and a land-impact
condition”. The minimum size limit is two grid points and
the radius to look for weaker or smaller clumps is 550 km.
The land-impact condition tests whether the point is over the
land or the ocean. In this paper, the latitude-dependent radius
of step (4) “varies linearly from 600 to 400 km between 15
and 30◦ latitude in both hemispheres, with constant values
outside this latitude band”, which does not correspond with
the 350 km specified by Bell et al. (2018).

C2.2 TempestExtremes Adaptation

The TempestExtremes nodal feature detection framework
(DetectNodes + StitchNodes) does not work with the same
paradigm, but still allows us to implement a very similar
algorithm. The fundamental principle in DetectNodes is to
track a local extremum of one variable. It can then merge all
extrema in a given radius (rmerge) into the largest one, and
the position of the extremum is considered the center of the
detected feature. One can also add discriminatory criteria, ei-
ther (i) in terms of thresholds to be satisfied for given vari-
ables at the grid point of the extremum, or by one grid point
in a given radius rthreshold from the center, or (ii) in terms of a
closed contour. (see Ullrich and Zarzycki, 2017). The subse-
quent StitchNodes uses a nearest-neighbors approach to link
consecutive points within a maximum distance rrange. In this
command, one can also allow for a gap to exist in the track,
and check additional thresholds that must be satisfied for a
given number of points in order to validate the track.

Here we choose to look for a local maximum of OWZ, and
to merge all weaker maxima in a 5◦ GCD (≈ 550 km in the
original algorithm). Thresholds from the original algorithm
must be satisfied by at least one grid point in a rthreshold ra-
dius (that will be determined from the following sensitivity
tests). In the StitchNodes command, we look for consecu-
tive points within a rrange radius (that will also be determined
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Figure C1. Sensitivity of the number of tracks, the POD, and the FAR of OWZ for different values of rthreshold.

from the following sensitivity tests). A 24 h gap is allowed,
corresponding to the “next 12 h time steps”). In addition to
this, core thresholds are assessed within the same rthreshold
radius, and must be satisfied for at least nine 6-hourly time
steps. Core thresholds include the “land-impact condition”
that we implement using the land–ocean mask and consider
as ocean points with less than 50 % of land. The minimum
duration is set to 48 h, corresponding to the 9 6-hourly time
steps, so that it is not a discriminatory criterion but helps to
accelerate the computation.

At this stage, we have two parameters left to determine:
rthreshold and rrange, for which we conduct independent sensi-
tivity tests.

C2.3 Sensitivity analysis

In the original algorithm, the thresholds must all be satis-
fied in the same grid point. However, it was used on ERA-
Interim data interpolated onto a 1◦× 1◦ grid, whereas ERA5
data present itself with 0.25◦× 0.25◦ grid points. One can ex-
pect that this higher resolution might allow for the formation
of an eye in the circulation, so that all the thresholds might
be verified in the wall rather than in the center of the circu-
lation. We test seven values for rthreshold: 0◦ (thresholds must
be passed at the center), 0.5, 1◦.

The 350 km range in Bell et al. (2018) corresponds to 3◦,
whereas the [400, 600 km] range in Tory et al. (2013b) cor-
respond to [3.5, 5.5◦]. In UZ, the range is set to 8◦. We test
rrange values between 3 and 8◦.

To assess the sensitivity of the detection to these thresh-
olds, we compute the number of tracks detected. We also
pair detected tracks with observed IB-TS tracks following
the procedure described in Sect. 2.4, and compute the FAR
and the probability of detection.

The sensitivity to the rrange parameter is low (not shown),
in accordance with results in UZ by Zarzycki and Ullrich
(2017). We choose rrange = 5◦ in the middle of Tory et

al. (2013b) range. Figure C1 shows the sensitivity of the
three metrics to the rthreshold parameter. We can see that for
rthreshold ≥ 2, the POD saturate and all additional tracks are
false positive. For this reason, we keep rthreshold = 2.

C2.4 Code

Listing C3. DetectNodes code for OWZ.
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Listing C4. StitchNodes code for OWZ.

Figure D1. Distribution of the duration of the overlap between
matching detected and observed tracks. Whiskers display the 1st
and 99th percentiles, and white points show the mean of the distri-
butions. Outliers are not shown.

Appendix D: Match characteristics

Here we validate our matching method through a few sanity
checks. They show that the pairing methodology is not very
sensitive.

Figure D1 shows the distribution of the numbers of over-
lapping time steps, i.e., the time for which two paired tracks
are closer than 300 km. By construction of our method, there
must be at least one of them. It is compared to the distribu-
tion of lifetime in IB-TS. Figure D2 shows the proportion
of the observed lifetime matching the corresponding ERA5
track, when it exists. Figure D3 shows the distribution of the
distance between the observed and detected tracks, averaged
over the overlapping time steps for each pair of tracks. Each
distribution is provided for each tracker as a boxplot that in-
dicates the 1st, 25th, 50th, 75th, and 99th percentiles.

Figure D2. Distribution of the duration of the overlap between
matching detected and observed tracks. Whiskers display the 1st
and 99th percentiles, and white points show the mean of the distri-
butions. Outliers are not shown.

Figure D1 shows that despite the fact that our methodology
imposes only one overlapping point, more than 99 % of the
pairs, whatever the tracker, match for at least 5 time steps.
It shows that the matching is not sensitive to this thresh-
old. In fact, Fig. D3 shows that in most cases, observed
tracks are matched for more than half of the observed life-
time (Fig. D3). This proportion relates to the mean-detected
lifetime by each tracker displayed in Fig. 7. Moreover, the
matching distance is of the order of a few grid cells, inferior
or close to 100 km regardless of the trackers, with a slightly
better accuracy of the trackers that use SLP as their center.
All this gives us confidence in the fact that the tracks that are
paired together are indeed corresponding, because they are
close to one another for a significant part of their lifetime.

Figure D3 (TRACK line) can be compared to Hodges
et al. (2017), who found that the TRACK match distance was
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Figure D3. Distribution of distance between matching detected and
observed tracks. Whiskers display the 1st and 99th percentiles, and
white points show the mean of the distributions. Outliers are not
shown.

about 1◦ for other reanalyses tracked with TRACK. The im-
provement can be related to the increase in resolution.

Code and data availability. ERA5 data are available on
the Copernicus Climate Change Service Climate Data
Store (CDS, https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-pressure-levels, last access: 22 Au-
gust 2022). The IBTrACS database is provided by NOAA at
https://www.ncdc.noaa.gov/ibtracs/ (last access: 22 August 2022).
All the scripts used to produce the present paper’s results are
available at https://doi.org/10.5281/zenodo.6424432 (Bourdin,
2022a). These include the code to run the UZ and OWZ trackers
and the original TRACK and CNRM databases, the code for the
post-treatment and the tracks matching Python scripts for the whole
analysis, the code to reproduce the figures, and finally, a copy
of v.0.5 of the dynamicoPy package used in the Python scripts
(https://doi.org/10.5281/zenodo.7015245; Bourdin, 2022b).
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