Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6677-2022
https://doi.org/10.5194/gmd-15-6677-2022
Development and technical paper
 | 
05 Sep 2022
Development and technical paper |  | 05 Sep 2022

Downscaling atmospheric chemistry simulations with physically consistent deep learning

Andrew Geiss, Sam J. Silva, and Joseph C. Hardin

Related authors

Classifying Thermodynamic Cloud Phase Using Machine Learning Models
Lexie Goldberger, Maxwell Levin, Carlandra Harris, Andrew Geiss, Matthew D. Shupe, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1501,https://doi.org/10.5194/egusphere-2025-1501, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-112,https://doi.org/10.5194/essd-2024-112, 2024
Revised manuscript accepted for ESSD
Short summary
Emulating aerosol optics with randomly generated neural networks
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023,https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Inpainting radar missing data regions with deep learning
Andrew Geiss and Joseph C. Hardin
Atmos. Meas. Tech., 14, 7729–7747, https://doi.org/10.5194/amt-14-7729-2021,https://doi.org/10.5194/amt-14-7729-2021, 2021
Short summary

Related subject area

Atmospheric sciences
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary
Chempath 1.0: an open-source pathway analysis program for photochemical models
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025,https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025,https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary
Atmospheric moisture tracking with WAM2layers v3
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
Geosci. Model Dev., 18, 4335–4352, https://doi.org/10.5194/gmd-18-4335-2025,https://doi.org/10.5194/gmd-18-4335-2025, 2025
Short summary
A new set of indicators for model evaluation complementing FAIRMODE's modelling quality objective (MQO)
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
Geosci. Model Dev., 18, 4231–4245, https://doi.org/10.5194/gmd-18-4231-2025,https://doi.org/10.5194/gmd-18-4231-2025, 2025
Short summary

Cited articles

Abdal, R., Qin, Y., and Wonka, P.: Image 2 Style-GAN: How to embed images into the Style-GAN latent space?, International Conference on Computer Vision (ICCV), 27 October 2019–2 November 2019, Seoul, Korea, https://doi.org/10.1109/ICCV.2019.00453, 2019. a
Anh, D. T., Van, S. P., Dang, T. D., and Hoang, L. P.: Downscaling rainfall using deep learning long short-term memory and feedforward neural network, Int. J. Climatol., 39, 4170–4188, https://doi.org/10.1002/joc.6066, 2019. a
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: Configuration and intercomparison of deep learning neural models for statistical downscaling, Geosci. Model Dev., 13, 2109–2124, https://doi.org/10.5194/gmd-13-2109-2020, 2020. a
Bastidas, A. A. and Tang, H.: Channel Attention Networks, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 16–17 June 2019, Long Beach, CA, USA, 881–888, https://doi.org/10.1109/CVPRW.2019.00117, 2019. a
Bedia, J., Baño-Medina, J., Legasa, M. N., Iturbide, M., Manzanas, R., Herrera, S., Casanueva, A., San-Martín, D., Cofiño, A. S., and Gutiérrez, J. M.: Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment, Geosci. Model Dev., 13, 1711–1735, https://doi.org/10.5194/gmd-13-1711-2020, 2020. a
Download
Short summary
This work demonstrates the use of modern machine learning techniques to enhance the resolution of atmospheric chemistry simulations. We evaluate the schemes for an 8 x 10 increase in resolution and find that they perform substantially better than conventional methods. Methods are introduced to target machine learning methods towards this type of problem, most notably by ensuring they do not break known physical constraints.
Share