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Abstract. Recent advances in deep convolutional neural net-
work (CNN)-based super resolution can be used to down-
scale atmospheric chemistry simulations with substantially
higher accuracy than conventional downscaling methods.
This work both demonstrates the downscaling capabilities
of modern CNN-based single image super resolution and
video super-resolution schemes and develops modifications
to these schemes to ensure they are appropriate for use
with physical science data. The CNN-based video super-
resolution schemes in particular incur only 39 % to 54 % of
the grid-cell-level error of interpolation schemes and gen-
erate outputs with extremely realistic small-scale variability
based on multiple perceptual quality metrics while perform-
ing a large (8×10) increase in resolution in the spatial dimen-
sions. Methods are introduced to strictly enforce physical
conservation laws within CNNs, perform large and asymmet-
ric resolution changes between common model grid resolu-
tions, account for non-uniform grid-cell areas, super-resolve
lognormally distributed datasets, and leverage additional in-
puts such as high-resolution climatologies and model state
variables. High-resolution chemistry simulations are critical
for modeling regional air quality and for understanding fu-
ture climate, and CNN-based downscaling has the potential
to generate these high-resolution simulations and ensembles
at a fraction of the computational cost.

1 Introduction

The chemical composition of the atmosphere is tightly cou-
pled to many important processes in the global Earth system,
including air pollution exposure, biogeochemical cycles, and
the Earth’s radiative budget. Exposure to atmospheric pollu-
tion, much of which is formed through chemical reactions in
the atmosphere, is the leading environmental cause of death
worldwide, responsible for millions of premature deaths per
year (Forouzanfar et al., 2015). Global biogeochemical cy-
cles are strongly modulated by the chemical composition
of the atmosphere, including effects of greenhouse gases,
aerosols, and toxic pollutants (e.g., Clifton et al., 2020; Ma-
howald, 2011). The impact of atmospheric composition on
Earth’s radiative budget is a major driver of modern climate
change through both direct absorption and scattering of radi-
ation and indirect interactions with a variety other radiatively
important processes (e.g., aerosol–cloud interactions; Com-
mittee on the Future of Atmospheric Chemistry Research et
al., 2016).

Many of these globally relevant processes are fundamen-
tally controlled at very small spatial scales, motivating the
development of high-resolution computational model repre-
sentations of atmospheric chemistry over large spatial do-
mains (e.g., continental–global). These models solve the con-
tinuity equation for atmospheric chemical constituents, cap-
turing the relevant known physical and chemical processes
to allow for prediction at fine spatial resolution. These fine-
scale simulations enable scientific and policy-relevant in-
sights that are not possible with coarser model predictions
(e.g., Hu et al., 2018; Keller et al., 2021). However, the
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large computational expense of running these high-resolution
models can be a limiting factor in their adoption and applica-
tion.

To address this issue of computational expense, a variety
of post-processing techniques have been developed for pre-
dicting atmospheric composition at high resolution. These
range from simple statistical scaling to advanced machine
learning architectures. For example, Geddes et al. (2016)
scale coarser observed maps of nitrogen dioxide by the spa-
tial distribution observed from a higher-resolution instru-
ment, which is ultimately used to infer long-term trends
in NO2 concentrations. Recent work by Sun et al. (2021)
uses a Bayesian neural network to combine a variety of data
sources for high-resolution surface ozone concentration pre-
dictions, allowing for improved understanding of long-term
ozone trends. These studies on atmospheric composition and
related research across the Earth sciences (e.g., Anh et al.,
2019; Bedia et al., 2020; Vandal et al., 2018) demonstrate
the value in these post-processing downscaling approaches
as a computationally efficient technique for high-resolution
prediction.

1.1 Convolutional neural networks and super
resolution

In the last 10 years, deep-learning research has rapidly ex-
panded. Deep convolutional neural networks (CNNs) have
shown impressive performance improvements over conven-
tional methods for many image processing tasks such as clas-
sification (Krizhevsky et al., 2012), object detection (Gir-
shick et al., 2013), and segmentation (pixel-wise labeling)
(Ronneberger et al., 2015). CNNs learn the weights of convo-
lutional kernels rather than processing individual input pix-
els separately. Their learned representations are translation-
ally invariant, and they can efficiently represent common 2D
features in their training data. While the majority of CNN
research has focused on image processing, they are particu-
larly powerful for processing most data that are organized on
a regular grid.

CNNs have shown impressive results when applied to
single-image super resolution (SISR) (Wang et al., 2020).
SISR artificially enhances the resolution of images after they
are captured. This can easily be accomplished using 2D in-
terpolation, which estimates sub-pixel data based on neigh-
boring pixels, but the resulting images are often of low qual-
ity. More sophisticated SISR schemes exist (Nasrollahi and
Moeslund, 2014), like “A+”, which can incorporate infor-
mation from a wider area surrounding a pixel by compari-
son to a dictionary of exemplars (Timofte et al., 2015). Re-
cent CNN-based methods can produce even sharper super-
resolved imagery however. Initially, Dong et al. (2016) used
a three-convolutional-layer CNN to achieve state-of-the-art
SISR results, and the approach was quickly improved upon
with a deeper (more layers) CNN by Kim et al. (2016). Since
then, SISR CNN architectures have undergone rapid devel-

opment, trending towards larger and more complex designs.
Some key developments have been incorporation of residual
blocks that provide skip connections which improve training
in very deep network architectures (He et al., 2016; Lim et
al., 2017), dense blocks in which each convolutional layer
receives input from all the prior layers in the block (Huang et
al., 2017; Zhang et al., 2018b), and channel attention mod-
ules that help exploit inter-channel relationships (Bastidas
and Tang, 2019; Zhang et al., 2018a); use of transposed con-
volutions (Long et al., 2015) and pixel-shuffle (Shi et al.,
2016) for upsampling (a point of clarification: both the terms
“upsampling” and “downscaling” refer to increases in res-
olution, “upsampling” is often used in the context of image
processing and “downscaling” is used in the context of atmo-
spheric modeling); and the use of feature loss (loss based on
the internal representations of pretrained image classification
CNNs) and adversarial loss to hallucinate plausible sub-pixel
features (Goodfellow et al., 2014; Ledig et al., 2017). State-
of-the-art CNN-based schemes can now produce incredibly
high-fidelity images from very low-quality inputs.

There have been similar advances in CNN-based video su-
per resolution (VSR). The VSR problem is an extension of
SISR where video frames preceding and following an image
are used as additional inputs. While the core CNN structures
used in many VSR schemes are similar to SISR CNNs, VSR
involves several key considerations that SISR does not (Liu
et al., 2022). A major component of many VSR schemes
is a frame alignment preprocessing step to compensate for
camera motions, though this is not a necessary consider-
ation for application to outputs from atmospheric models.
VSR schemes often include motion vectors as an additional
input, which are often computed using optical flow (Lucas
and Kanade, 1981), and can provide additional skill. Perhaps
most importantly, there are several different approaches to in-
corporating temporal information in the CNN architectures:
either by treating the time dimension like an extra spatial di-
mension and using 3D convolutions (Kim et al., 2019), pro-
viding separate frames as input channels to 2D convolutions
(Yan et al., 2019), or using a recurrent CNN (Haris et al.,
2019). The addition of this temporal information in super-
resolution schemes can improve performance far beyond the
capabilities of SISR CNNs.

1.2 CNNs for downscaling atmospheric data

The immense cost and high societal impact of atmospheric
modeling and observing systems make recent CNN-based
super-resolution techniques an exciting development, with
the prospect of enhancing the resolution of atmospheric data
at relatively low cost. Several authors have already demon-
strated their potential in Earth-science-related applications.
Super-resolution CNNs have been applied to radar data
(Geiss and Hardin, 2020), wind and solar modeling (Sten-
gel et al., 2020), satellite remote sensing (Liebel and Körner,
2016; Lanaras et al., 2018; Müller et al., 2020), precipitation
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modeling (Wang et al., 2021), and climate modeling (Vandal
et al., 2018; Baño Medina et al., 2020).

While CNN-based image super resolution has far outpaced
conventional methods in terms of image quality, there are
additional considerations when applying these schemes to
physical science data: enforcement of known physical laws,
multi-modal or multi-resolution inputs, non-normally dis-
tributed data, and irregular grid spacing to name a few. Of
particular importance is the fact that SISR CNNs do not ex-
plicitly enforce consistency between their inputs and outputs.
This is problematic if the schemes are to be applied to scien-
tific data, where we may wish to enforce strict agreement
between the low-resolution and super-resolved data based on
the known properties of the underlying physical system. Sev-
eral studies have addressed this problem by adding terms
to the neural network’s loss function that nudge it towards
better agreement between the low- and high-resolution data
(Ulyanov et al., 2018; Abdal et al., 2019; Menon et al., 2020),
though these do not guarantee adherence to physical con-
straints. Sturm and Wexler (2020, 2022) developed a method
to strictly enforce conservation rules in output from a multi-
layer perceptron-style neural-network-based emulator for a
photochemical box model. Finally, Geiss and Hardin (2021)
introduced a method to strictly enforce agreement across res-
olutions under 2D averaging, which we extend here for appli-
cation to output from a global chemistry model. Developing
CNNs with internal representations of known physical prop-
erties of the underlying system has been identified as a key
hurdle before their potential can be fully realized on prob-
lems in the physical sciences (Reichstein et al., 2019; Bouk-
abara et al., 2021; von Rueden et al., 2021; Beucler et al.,
2021).

1.3 Contributions and impacts

This work develops and evaluates the techniques and
CNN components necessary to apply the impressive super-
resolution capabilities of CNNs to the problem of down-
scaling atmospheric chemistry simulations by incorporating
components into a CNN that strictly and exactly enforce
conservation of chemical concentrations between the high-
resolution output and low-resolution input, integrate normal-
ization and re-dimensionalization steps into the CNN to al-
low it to operate directly on lognormally distributed data,
account for the irregular grid-cell areas in the atmospheric
chemistry model’s lat–long grid, apply different resolution
changes along the latitude and longitude dimensions, incor-
porate high-resolution chemical climatologies, and leverage
model state variables as additional inputs. Finally, we incor-
porate the time evolution of atmospheric data into the super-
resolution process using a CNN-based VSR scheme. The end
result is a downscaling CNN that can dramatically outper-
form conventional downscaling schemes and can guarantee
that its outputs remain physically consistent with the input.

This sort of simulation post-processing technique has myr-
iad use cases, all taking advantage of the fact that only one
set of computationally expensive high-resolution simulations
needs to completed. Following the training of a CNN for
downscaling, a user can generate coarse simulations at rela-
tively low computational cost and then apply the downscaler
to explore the potential high-resolution characteristics in that
simulation. Model ensembles are an ideal use case for this
application, where a large number of high-resolution simu-
lations is too resource-intensive to complete. Using a down-
scaling CNN, like the one described in this work, would al-
low for the majority of ensemble member simulations to be
completed at a coarser model resolution and, consequently,
at much lower computational expense.

2 Data

Here, we use model data available from the NASA GEOS
Composition Forecast (GEOS-CF) system to explore the ap-
plication of CNN downscaling to atmospheric composition
(Knowland et al., 2020). The GEOS-CF system predicts
the abundance and distribution of a variety of atmospheric
chemical species using the NASA GEOS model coupled to
the GEOS-Chem chemical transport model (see Keller et
al., 2021, for additional information about GEOS-CF). The
GEOS-CF simulation output is available on a 0.25◦× 0.25◦

mesh, and we train the CNN to downscale data that have been
degraded to 2.0◦× 2.5◦ resolution using 2D averaging. This
is an unusual (8× 10) resolution increase compared to most
of the SISR literature because it is both very large and asym-
metric, but these are two commonly used model grid reso-
lutions. We use the meteorological replay simulation (“das”
files), which uses assimilated meteorology to drive model dy-
namics (Orbe et al., 2017) for the years 2018–2021, and fo-
cus on five well-studied atmospheric pollutants: NO2, SO2,
CO, O3, and PM2.5. Each of these compounds has a different
source profile, spatial distribution, and atmospheric lifetime,
allowing for evaluation of the CNN downscaling method in
a variety of contexts.

3 Method

3.1 Neural network

This study uses the enhanced deep residual network (EDRN)
architecture (Lim et al., 2017) at the core of the super-
resolution CNN. The architecture has been modified by
adding layers near the beginning and end of the CNN that
perform normalization and dimensionalization of the data
(respectively), enforce physical consistency between inputs
and outputs, and ingest climatological data. The core com-
ponent of the CNN is the exact EDRN architecture however,
which consists of two major components: a series of “resid-
ual” blocks that build up a deep feature representation of the
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data (He et al., 2016), followed by an upsampling module
that increases the spatial resolution of the data based on the
those features. We use the unmodified EDRN architecture at
the core of our CNN, but our CNN construction means that
other common super-resolution architectures can be substi-
tuted if desired, or newer schemes can be used as they are
developed.

The full super-resolution CNN used here operates as fol-
lows: the initial input is passed through a normalization layer
that converts it to an approximately normal distribution, fol-
lowed by a single initial 9× 9 convolutional layer with 64
output channels. Note that this normalization layer applies a
predefined operation depending on the data type and should
not to be confused with “batch normalization.” Then, the data
are passed through a series of 16 residual blocks. These con-
sist of a 3× 3 convolution, followed by a ReLU (rectified
linear unit) transfer function, followed by another 3× 3 con-
volutional layer, each with 64 output channels. The residual
blocks include skip connections that add the input tensor to
their output. This creates a more direct path for gradients to
propagate through the CNN during training, which mitigates
the vanishing gradient problem (a tendency for gradients to
approach zero during training of deep CNNs) and allows
very deep architectures to train successfully. One additional
skip connection is included that bypasses all of the residual
blocks. The residual blocks are followed by an upsampling
module. The upsampling is done with two pixel shuffle oper-
ations, where the number of channels is increased by a 3× 3
convolutional layer, and then the tensor is reshaped to con-
vert the channel dimension to larger spatial dimensions. A
custom Keras layer was implemented to perform pixel shuf-
fle with asymmetric increases along the spatial dimensions.
We found that the CNN performed best when the upsampling
module was broken into a 4× 5 pixel shuffle, followed by a
convolutional layer, followed by a 2× 2 pixel shuffle rather
than a single 8× 10 operation. Finally, the tensor is passed
through a 9×9 convolution with a single output channel, a di-
mensionalization layer, and then a custom layer that enforces
conservation rules between the CNN’s high-resolution output
and low-resolution input. The CNN is diagrammed in Fig. 1a,
and the code has been made publicly available (Geiss, 2022a;
see the “Code availability” section).

The CNN is also used in configurations where high-
resolution climatologically averaged mixing ratios are in-
cluded as additional inputs. When climatology is included,
the data are merged with the sample data through chan-
nel concatenation, both at low resolution before the residual
blocks and at high resolution after the upsampling module.
Several convolutional layers with ReLU transfer functions
and max-pooling layers are used to process the climatology
data. These are diagrammed in Fig. 1b. The cosine of latitude
is also included as an input in some cases but is only used by
the conservation law enforcement layer, meaning none of the
layers with trainable parameters receive latitude data as an

input (providing latitude data as an input to CNN did not im-
prove performance).

We also demonstrate a VSR CNN that has been modified
for use with atmospheric data. These CNNs have similar in-
ternal structure to the SISR CNNs but replace the 2D con-
volutions with 3D convolutions (Kim et al., 2019), use 256
channels within their residual blocks, and use only 12 resid-
ual blocks. Seven consecutive model time steps are processed
at a time with the primary goal of super-resolving the mid-
dle time step. During training, the CNN is tasked to super-
resolve all seven time steps however, and their contributions
to the loss are weighted such that the center time step has
the highest impact (the weights used were 1, 4, 16, 64, 16,
4, and 1). At inference time, only the center time step is
retained as the output. CNN-based VSR schemes often in-
clude optical-flow-based motion vectors as inputs (Liu et al.,
2022). Here, rather than computing motion vectors, we pro-
vide the 10 m wind vector components and sea level pressure
(SLP) from the simulation as additional low-resolution in-
put channels. The wind vector components (units of ms−1)
were standardized by scaling by a factor of 0.02, and the sea
level pressure field (units of Pa) is standardized by ŜLP=
2(SLP× 10−5

− 1). Finally, a slightly different approach to
including climatology was used for the VSR CNNs. While
the SISR CNNs were trained using randomly sampled spatial
chips (randomly selected 32× 32 grid-cell regions at coarse
resolution, 256×320 at high resolution) and including high-
resolution climatology as an input, the VSR CNNs process
the entire global grid. This means that the CNNs can simply
learn high-resolution climatologies from the training set us-
ing their layer biases. This an effective and simpler approach
to including HR climatological data in the super-resolution
(SR) process but is almost certainly more prone to over-
fitting due to the training sample diversity that is lost without
random sampling. No over-fitting was apparent here based on
evaluation on the test and validation sets however. The VSR
CNNs have significantly larger memory requirements than
the SISR CNNs and were trained on a6000 GPUs, while the
SISR CNNs were trained on RTX 2080ti GPUs. The VSR
CNNs have about 50 million parameters and take about 40 h
to train on a single GPU, while the SISR CNNs have about
2 million parameters and take about 20 h to train. We have
made all the trained CNNs available for download (Geiss,
2022b).

3.2 Training on lognormally distributed data

Many trace chemical species have approximately lognormal
mixing ratio distributions, meaning that across space and
time, their concentrations can span several orders of magni-
tude. This raises several issues when training a CNN, par-
ticularly when trying to enforce conservation laws within
the CNN. Neural networks often struggle to train on highly
skewed or non-normal data distributions. There are two ma-
jor factors: (1) CNNs train best when internal activations are
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Figure 1. Diagram of the CNN architecture. Yellow cells denote input and output tensors, blue cells are commonly used Keras layers, red
cells denote custom implemented layers, green cells represent residual blocks, and hashed cells denote layers that are conditionally on or off
depending on whether climatological data are being used.

approximately normally distributed. In particular, when out-
puts from convolutional layers are far from the nonlinear-
ity or deep in the saturated region of the following transfer
function, gradients vanish (Glorot and Bengio, 2010), which
causes inefficient or failed training. Lognormally distributed
inputs and outputs contribute to this problem. (2) When a
conventional pixel-level loss function, typically used for su-
per resolution, such as mean squared error, is applied to
lognormally distributed output, the largest errors will cor-
respond to the largest values in the output with order-of-
magnitude smaller contributions from grid cells with lower
values (though we note that other loss functions exist that
address this issue). In practice, the CNN prioritizes predict-
ing the location of grid cells with large values very accurately
while mostly ignoring grid cells with smaller values, which is
not usually desirable. A common solution is to train the CNN

on data that have been standardized to a normal distribution
and then re-dimensionalize the output from the CNN as a
post-processing step. For the chemical species considered in
this study, a reasonable normalization procedure is to take the
log of the dimensional data then subtract the mean and di-
vide by the standard deviation. A second problem then arises
when enforcing conservation rules within the CNN however:
conservation laws must be enforced on dimensionalized data.
Ideally, we would like conservation laws to be enforced in-
ternally in the CNN so that the loss function can be applied to
the final output, and the CNN can learn to perform super res-
olution with this enforcement step. This is problematic if the
CNN’s internal representations and initial outputs are stan-
dardized.

The approach used here for both learning and enforcing
conservation rules on lognormally distributed data involves
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incorporating a normalization step and re-dimensionalization
step into the CNN. The normalization layer performs this op-
eration:

x̂ =
1
σ
(log(x+ ε)−µ), (1)

where the hat represents dimensionless data, and µ and σ are
constants selected based on the mean and standard deviation
of the natural log of each input variable and are estimated us-
ing the training set. ε = 10−32 and is included to avoid tak-
ing the log of 0. The values of µ and σ used in this study are
given in Table A1. The output from the final convolutional
layer in the CNN is not passed through a transfer function.
Instead, a dimensionalization layer is used that applies the
inverse of Eq. (1):

x = eσ x̂+µ. (2)

After the CNN outputs are dimensionalized, they are passed
to a layer that strictly enforces conservation rules, and loss
is computed on the output from that layer. Ultimately, there
are two major advantages to incorporating the standardiza-
tion step into the CNN architecture: it enables use of the con-
servation enforcement layer, and it will allow for easier use of
the CNN in downstream applications, where it can be applied
directly to model output without requiring preprocessing and
post-processing steps.

3.3 Training on O3 data

The O3 data are not lognormally distributed. They are, how-
ever, non-negative, so a slightly different procedure is used
to super-resolve the O3 field. In this case, the normalization
layer is removed, and the O3 data are simply scaled by a con-
stant value of 4× 106 (dimensionless). This ensures that all
values in the training set are within the range [0,1] (though
most fall within [0,0.2]). The dimensionalization layer is
also removed and replaced by a sigmoid transfer function,
followed by division by the same constant. An alternative is
to use the ReLU (rectified linear unit) or ELU+ 1 (exponen-
tial linear unit with 1 added to the output) transfer functions,
which would also ensure non-negative outputs and would not
cap the maximum value of the output, but we found that sig-
moid works better in practice. Other than these changes, the
CNN architecture and training procedure are unchanged for
O3.

3.4 Enforcing conservation in the CNN

Here, we introduce the function used to enforce strict conser-
vation of simulated mixing ratios when applying super reso-
lution. This function is continuous and differentiable and is
included in the CNN architecture during both training and in-
ference. The approach is similar to Geiss and Hardin (2021);
however, the typical lognormal distribution of trace chemical
species means that this problem has slightly different con-
straints, and a different operator is necessary. In particular,

the outputs from the dimensionalization layer are bounded by
[0,∞). While the mixing ratios technically should have an
upper bound of 1, this does not need to be explicitly enforced
for trace chemical species in practice. We use the following
notation: P is the mixing ratio in a single low-resolution in-
put grid cell corresponding to anN×M region in the output,
xi is the mixing ratio in a high-resolution grid-cell output by
the second to last layer of the CNN within the N ×M region
corresponding to P , and f (x,P )i is the high-resolution out-
put after a continuous differentiable function that enforces
conservation of quantities in the input field has been ap-
plied to the initial output from the CNN. Here, x represents
all N ×M high-resolution output pixels corresponding to P ,
while xi will represent a single high-resolution pixel. The
function f (x,P )i can be formulated:

f (x,P )i = xi

(
P

x+ ε

)
,

where x =
1
NM

∑
xj∈x

xj , and ε = 10−32. (3)

This formulation of f enforces the following conservation
rule, which ensures that the CNN’s final high-resolution out-
puts from f exactly reproduce the coarse-resolution inputs
(P ) under 2D spatial averaging:

P =
1
NM

∑
xi∈x

f (x,P )i . (4)

This is accomplished by multiplying each block of initial
output grid cells by a constant P/(x+ ε) that ensures the
corrected output pixels sum to P . ε is added to the de-
nominator to avoid dividing by zero errors. This formula-
tion of f is differentiable with respect to x, which is cru-
cial because this means it can be included in the neural net-
work during training, and gradients can be back-propagated
though this conservation enforcement layer to the trainable
parameters within the CNN. f also has the useful property
that f (x,P )i ≥ 0, which prevents the CNN from generating
non-physical negative mixing ratios. As a point of clarifica-
tion, throughout the paper we refer to this operation (f ) as a
“layer”, even though it does not contain any trainable param-
eters; this is common in the machine learning literature (e.g.,
“dropout layer” or “activation layer”).

3.5 Latitude weighting

An additional concern when enforcing conservation laws on
model output is that the model uses a lat–long grid. The grid
cells do not have equal area, and cells near the Equator will
be significantly larger than cells near the poles. Ideally, this
should be accounted for when taking a spatial average. For
instance, when taking a 8× 10 average over lat–long grid
cells, the poleward cells should have a smaller contribution
to the mean than the equatorward cells because of their size
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difference. An additional term that weights the cell contribu-
tions to the mean can be added to Eqs. (3) and (4), such that
Eq. (3) becomes

f (x,8,P )i = xiP8

 ∑
xj ,φj∈x,8

xj cosφj + ε

−1

,

where 8=
∑
φj∈8

cosφj . (5)

Here, x and 8 represent the collection of grid point values
(xi) and latitudes (φi) that correspond to the low-resolution
pixel/grid point P . The summation in the definition of f now
takes the average of the values in x weighted by the cosine
of latitude. This formulation of f now enforces a latitude-
weighted conservation rule:

P =8
−1 ∑
xi ,φi∈x,8

f (x,8,P )i cosφi . (6)

3.6 Training procedure

The data were divided into a training, test, and validation set.
The simulation uses an hourly time step and ran from 00:30 Z
on 1 January 2018 to 12:30 Z on 16 June 2021. Data from
2018 and 2019 were used for training, from 2021 for vali-
dation, and from 2020 for testing. The year 2021 was used
for validation because the run only included half of the year.
This results in 17 520 training samples, 8784 test samples,
and 3996 validation samples. Mean absolute error (MAE)
computed on the validation set was monitored during train-
ing to ensure the CNNs were not over-fitting.

The SISR CNNs were trained on 12 000 000 randomly se-
lected samples using a mini-batch size of 12. This results
in 1× 106 total weight updates per training run. The Adam
optimizer was used with an initial learning rate of 0.0001,
β1 = 0.9, and β2 = 0.999. After 80 % of the training, the
learning rate was manually reduced by a factor of 10. The
CNNs use the mean squared error of the log of the outputs as
a loss function:

L= (log(y+ ε)− log(ŷ+ ε))2, (7)

where y and ŷ are the ground truth and CNN predictions re-
spectively and ε = 10−32 is included to prevent taking log0.
We refer to this loss function as “LOG-MSE.” The O3 CNN
simply uses MSE as the loss function.

The training procedure for the VSR CNNs used identical
validation split, optimizer, and loss functions, except that the
O3 VSR CNN required half of the initial learning rate to en-
sure stability. A lower batch size of four was used due to GPU
memory limitations, and the validation loss had stopped de-
creasing after only around 40 000 weight updates. The learn-
ing rate was reduced after the 32 000th training sample.

Training samples were generated for the SISR CNNs by
randomly selecting 256× 320 size chips from the training

set and reducing their resolution to 32× 32 with 2D aver-
aging. No data augmentation schemes were used other than
this random selection of training chips. The CNNs were im-
plemented in Keras to accept inputs of variable size, and the
convolutional operations performed within the network are
translationally invariant. This means that the CNN can be
trained with smaller chips, instead of full global realizations,
and then applied to the full model grid one time step at a
time during the testing phase. The VSR CNNs were simply
trained on global samples selected in random 7 h chunks.

3.7 Evaluation

We compare the CNN downscaling to three common ap-
proaches for increasing data resolution. The first is simply
nearest-neighbor interpolation, which is included as an ex-
ample of a worst-case downscaling approach. Secondly, we
compare it to bilinear and bicubic interpolators, which are
frequently used for enhancing the resolution of images. Fi-
nally, we compare it to an atmospheric chemistry downscal-
ing scheme that is capable of incorporating high-resolution
chemical climatologies (Geddes et al., 2016) (referred to
as “Clim.” below). The approach projects the coarsely re-
solved modeled mixing ratios, which capture the transient
changes in concentration, onto the finely resolved spatial pat-
tern of climatological mixing ratios. For chemical species
like NO2, that have a very persistent spatial distribution with
strong gradients, this approach significantly outperforms in-
terpolation. The version of the climatological average scal-
ing (e.g., Geddes et al., 2016) scheme used here does not
include the smoothing operator, which increases the visual
quality of the result. By omitting this smoothing step how-
ever, this climatology-based downscaling approach gains the
same conservation properties as the CNNs used here: the
low-resolution input data will be exactly reproduced under
2D averaging.

The downscaling CNN was evaluated using grid-cell-wise
mean absolute error (MAE) of the outputs. MAE was used
because it reports error in the units of the input data and
does not exaggerate error contributions from single high-
concentration grid cells in the same way that MSE or root-
MSE do. Exact reconstruction of the high-resolution data is
impossible, and even outputs with very low MAE may ap-
pear spatially smoothed, so we also evaluated results using
two other metrics that approximate how realistic the spatial
structure in the downscaled output is. The first is the struc-
tural similarity index (SSIM). SSIM approximates the visu-
ally perceived difference in spatial structure between two im-
ages (Wang et al., 2004). It is a dimensionless value and
scales between −1 and 1, with an SSIM of 1 representing
an exact match between the two images (negative SSIM in-
dicates negatively correlated images, so SSIMs seen in this
work will all be positive). The SSIM is constructed from
three components measuring differences in luminance, con-
trast, and structure (in the context of images), evaluated using
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a moving window, and then spatially averaged. Because the
mixing ratio data used here are lognormally distributed, we
compute the SSIM on the log of the concentrations (“LOG-
SSIM”); otherwise there is only limited perceptible spatial
structure (except in the case of O3).

Finally, zonal power spectral density (PSD) of the down-
scaled data, averaged meridionally, was evaluated. The PSD
is defined here as

PSD= 10log10

(
|Fλ{log ŷ}|2

)
, (8)

where log ŷ represents the natural logarithm of the high-
resolution CNN output, Fλ represents the Fourier transform
taken with respect to longitude, and the overbar represent av-
eraging with respect to latitude and over all test samples. The
PSD provides an estimate of the spatial variability and sharp-
ness of features recovered by the downscaling schemes. A
PSD curve that closely approximates the PSD curve of the
ground truth data implies a higher-fidelity result. The per-
formance of the CNNs and various benchmark schemes for
MAE and LOG-SSIM is shown in Table 1 and Fig. 5, and the
PSD curves for the various schemes are shown in Fig. 6.

4 Experiments

The super-resolution CNNs were trained separately for each
compound studied and were trained in several different con-
figurations to assess the impact of enforcing conservation
rules, latitude–area weighting, and including climatology as
an input. These different variations on the SISR and VSR
CNNs are denoted with the following labels:

“Ctrl”. Control experiments use the mostly unmodified
EDRN (Lim et al., 2017) architecture.

“Enf”. A layer is added to the end of the CNN to enforce
conservation rules using Eq. (3).

“Lat”. This is like “Enf”, but Eq. (5) is used instead to ac-
count for nonuniform grid-cell areas.

“Cli”. High-resolution climatologies are provided as an in-
put to the CNN.

For the SISR CNNs, we examine five cases. A control
CNN with the typical EDRN architecture is compared to a
training run with conservation law enforcement to determine
the impact of the enforcement layer. Another CNN is trained
with latitude-weighted conservation law enforcement to de-
termine the significance of latitude weighting. Finally, two
SISR CNNs are trained with climatology data, both with and
without the conservation enforcement layer. Only two exper-
iments were performed with the VSR CNNs, one with and
one without conservation law enforcement. Recall however,
that the VSR CNNs are constructed in such a way that they
can memorize the training set climatology. Errors computed
on the test set for each of these CNN configurations and each
of the benchmark schemes are shown in Table 1.

5 Results

Overall, the deep-learning schemes significantly outper-
formed the conventional downscaling and interpolation
methods (Table 1). Figures 2 and 3 show sample outputs from
the best-performing super-resolution scheme for each com-
pound (typically the VSRCtrl scheme) alongside coarsely re-
solved and ground truth mixing ratio data. Example outputs
from every downscaling scheme for an NO2 sample case are
shown in Fig. 4. Each of the sample cases shown were cho-
sen manually from the test set and were selected to include
features of interest that are difficult to super-resolve such
as high-concentration plumes downstream from urban areas
and particularly sharp gradients due to weather features like
strong cold fronts. While the sample cases were not chosen
randomly, they were all chosen prior to evaluation of any of
the downscaling schemes.

The SISR CNN schemes that incorporated high-resolution
climatological data performed significantly better than any
other SISR scheme in terms of both MAE and LOG-SSIM.
The MAEs of the climatology-driven CNNs were 54 %
(NO2), 56 % (SO2), 65 % (CO), 70 % (PM2.5), and 70 % (O3)
of the MAE of bicubic interpolation. The reason for this is
clear in Fig. 4, which shows output from each of the SR
schemes for a single test case of NO2 mixing ratios. The
test case shows NO2 concentrations over South America and
the South Atlantic and a portion of the Southern Ocean (the
precise times and locations for each of the test cases can be
found in Table A2). While all of the CNN-based schemes
(Fig. 4a, b, d, e, f, h, and i) can reconstruct the larger features
in the sample with much higher fidelity than the interpola-
tion schemes (Fig. 4k and i), the climatology-driven CNNs
(Fig. 4a, b, e, and f) are able to incorporate very small-scale
features that can only be determined from the high-resolution
climatology. In particular, the point sources associated with
small cities, islands, and ship tracks are incorporated into
their output, while these features are blurred by most of the
other schemes. The climatology-based downscaling scheme
is able to reproduce many of the stationary small-scale fea-
tures as well but cannot sharply resolve transient features as-
sociated with atmospheric motions (Fig. 4g). Essentially, it
represents the very small-scale stationary features at the tar-
get resolution but simultaneously represents the large-scale
transient features at the resolution of the input data. The other
CNN-based schemes (Fig. 4d, h, and i) are not able to recon-
struct these very small features, but they do produce much
sharper downscaled data than interpolation. They are partic-
ularly good at localizing sharp gradients that span multiple
pixels: the large, distinct plumes in the Southern Ocean and
ship tracks extending from southern Africa towards the North
and equatorial Pacific are both good examples of this.

The ship tracks visible in the samples in Fig. 4 pro-
vide an interesting demonstration of the impact of exposing
the CNNs to climatological information. Three different ap-
proaches were used in this study: VSR CNNs were trained on

Geosci. Model Dev., 15, 6677–6694, 2022 https://doi.org/10.5194/gmd-15-6677-2022



A. Geiss et al.: Downscaling atmospheric chemistry simulations with physically consistent deep learning 6685

Table 1. Performance of the downscaling CNNs compared to interpolation and conventional downscaling. The top section shows pixel-level
mean absolute error (lower values are better), and the bottom section shows the structural similarity index computed after taking the log
of the lognormally distributed variables and scaling the data to a 0–1 range (higher values are better). The best-performing CNNs for each
compound and error metric are indicated by bold text.

Mean absolute error

Interpolation/downscaling SISR CNNs VSR CNNs

Nearest Bilinear Bicubic Clim. Ctrl Enf Lat Ctrl/Cli Lat/Cli Ctrl Enf

NO2 (ppbv) 0.150 0.144 0.145 0.103 0.090 0.092 0.092 0.079 0.081 0.057 0.058
SO2 (ppbv) 0.186 0.177 0.186 0.136 0.118 0.123 0.123 0.104 0.108 0.073 0.074
CO (ppbv) 4.323 4.350 4.186 3.858 2.811 2.842 2.847 2.709 2.733 2.296 2.299
O3 (ppbv) 1.232 1.291 1.223 1.196 0.900 0.883 0.885 0.879 0.850 0.766 0.701
PM2.5 (µgm−3) 1.548 1.518 1.450 1.451 1.031 1.047 1.047 1.008 1.024 0.855 0.863

LOG-SSIM

NO2 0.772 0.773 0.785 0.862 0.902 0.903 0.903 0.929 0.930 0.959 0.959
SO2 0.834 0.837 0.843 0.863 0.911 0.911 0.912 0.922 0.922 0.945 0.945
CO 0.935 0.939 0.945 0.949 0.971 0.971 0.971 0.973 0.973 0.980 0.980
O3 0.865 0.872 0.884 0.877 0.920 0.922 0.922 0.926 0.930 0.941 0.951
PM2.5 0.832 0.841 0.853 0.838 0.917 0.918 0.918 0.921 0.921 0.947 0.947

Figure 2. Select sample cases from the test set. Each row represents a different compound, while the left column shows the coarsened data,
the middle column shows the super-resolved output from the best-performing CNN for that compound, and the right column shows the
ground truth.
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Figure 3. Sample cases for PM2.5 and O3. Same as Fig. 2.

global samples and can memorize climatology, and the SISR
CNNs were trained on randomly selected spatial chips and
cannot easily memorize ship track locations because they are
not static during training, except for the “Cli” SISR CNNs
that take high-resolution climatology data directly as an in-
put. Figure 4d, h, and i show outputs from CNNs that are
trained such that they cannot easily leverage climatological
information. These CNNs accurately localize the sharp lines
associated with the ship tracks and, based on how they were
trained, are likely inferring their location entirely from the
low-resolution inputs rather than memorizing climatology.
Super-resolution CNNs are, in general, particularly good at
localizing sharp linear features when they span multiple low-
resolution pixels. The sample outputs shown in Zhang et al.
(2018b) provide some good examples of this. Figure 4a, b,
e, and f show outputs from CNNs that can leverage clima-
tology. The high-resolution outputs from these CNNs go a
step beyond resolving the ship tracks as linear features and
include the individual point sources in the ship tracks that
are stationary in the model and occupy only a single high-
resolution grid cell.

The VSR schemes provide yet another significant perfor-
mance advantage over the best SISR CNNs. They improve
the pixel MAE to 40 % (NO2), 39 % (SO2), 53 % (CO), 56 %
(PM2.5), and 54 % (O3) that of bicubic interpolation. While
the SISR CNNs with climatology input are able to accurately
resolve small-scale sources of each of the chemical species,
the VSR CNNs are able to leverage the time evolution of
the low-resolution data to infer the locations of small-scale
plumes emanating from these sources. They are also able to
much more accurately resolve small-scale gradients in the
transient weather features in the simulation.

Strict enforcement of conservation rules did not lead to im-
provement in performance for most SISR CNNs. The CNNs
that included climatology performed from 1.0 % to 3.7 %
worse in terms of MAE. This was also the case for the CNNs
that did not include climatology as an input. Despite this
slight reduction in MAE, the SSIM was not substantially
altered by enforcing conservation rules. In the case of O3,
which was not lognormally distributed, the MAE and SSIM
were both improved by enforcing conservation laws (MAE
by 3.3 %). This slight improvement in skill is more consistent
with the results of Geiss and Hardin (2021). This discrep-
ancy is likely related to the lognormal distribution of most of
the mixing ratios. Conservation laws are enforced on the di-
mensional data (and not the standardized data processed by
the CNN), and the high-resolution dimensional samples are
dominated by a handful of grid cells with very high concen-
trations, while variability between other grid cells is minimal.
Enforcing conservation laws on this type of data means that
cases with extremely high mixing ratios in the original HR
data will tend have these high concentrations spread across
all the pixels corresponding to the LR grid cell in the in-
put to some degree. Even so, the CNNs seem to have mostly
learned to account for this because the increase in MAE is
very small, and while there may be some indication of the
location of the LR grid cells for the conservation law enforc-
ing CNNs in Fig. 4, any artifacting from this effect is nearly
imperceptible. Meanwhile, the VSR schemes did not show
such a pronounced difference between the cases with strict
enforcement of conservation rules and cases without. While
the VSR “Ctrl” cases did perform better, the change in MAE
was only a fraction of that for the SISR CNNs, and there was
no change in SSIM. This is encouraging and implies that im-

Geosci. Model Dev., 15, 6677–6694, 2022 https://doi.org/10.5194/gmd-15-6677-2022



A. Geiss et al.: Downscaling atmospheric chemistry simulations with physically consistent deep learning 6687

Figure 4. Super-resolved NO2 concentrations for 11:30 Z on 20 July 2020 in the simulation from 70.25–4.75◦ S and 75–225◦ E.

proving the overall accuracy of the super-resolution scheme
reduces negative impacts from enforcing conservation rules.

Using latitude weighting when enforcing conservation
rules had no substantial effect on the CNNs’ skill. This is
unsurprising because the latitude weighting does not dramat-
ically change contributions for neighboring grid cells when
enforcing conservation rules. In most locations (except very

close to the poles), the grid-cell areas are nearly constant over
a 2◦ change in latitude.

In addition to showing the mean MAE and LOG-SSIM in
Table 1, we show the distribution of these metrics across the
samples in the test set using violin plots in Fig. 5. This plot
demonstrates the variability in skill due to individual sam-
ples. There is relatively high variability in MAE, and the
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Figure 5. Distribution of mean absolute error and SSIM with respect to individual test cases for NO2.

best-case samples for the interpolation schemes have lower
MAE than the worst-case samples for the CNNs. Note that
we found no individual cases where bicubic interpolation
outperforms the best SISR CNN applied to the same case
however. There is significantly less variability due to sam-
ple variance in SSIM, and the distribution of SISR and VSR
CNN SSIMs does not overlap the SSIM distributions from
the interpolation schemes at all.

While high pixel-level accuracy is desirable for downscal-
ing schemes, perfect pixel-level accuracy is not achievable.
The process of reducing the resolution of data irreparably de-
stroys information, and while some small-scale features can
be inferred by super-resolution schemes, at least a portion
of the high-resolution information will not be recoverable.
In addition to evaluating pixel-level accuracy, we analyze the
power spectral density (PSD) of the downscaled outputs. The
PSD indicates the distribution of energy in frequency space.
If the SR scheme’s outputs have a very similar PSD curve
to the high-resolution data, this implies that while it may not
be correct at a pixel level, the SR data have a realistic dis-
tribution of variability across spatial scales. For some atmo-
spheric processes and downscaling applications, it may be a
priority to adequately represent small-scale features, like tur-
bulent motions for instance, even if they are not generated at
exactly the correct location.

Figure 6a shows the PSD curves for the high-resolution
simulation of NO2 (black) along with curves for the various
super-resolution and conventional downscaling schemes. Of
all the CNNs, the two VSR CNNs perform the best, very
closely matching the ground truth PSD curve. The two CNNs
that were provided with high-resolution climatology as an
additional input also perform significantly better than any
other scheme. They both have slightly lower energy at higher
frequencies than the ground truth, indicating that while they
produce very realistic variability, they are not able to capture
all of the small-scale variability in the original data. Addi-

tionally, these two curves vary smoothly with respect to fre-
quency and do not show spectral artifacts seen for several of
the other downscaling schemes. This indicates that they are
resistant to artifacting due to the scale of the low-resolution
data.

The bilinear and bicubic interpolation schemes heavily
smooth their outputs and have significantly lower power at
high frequencies than any of the others. Simultaneously, the
other two worst-performing schemes, nearest-neighbor and
climatological downscaling, have higher power at these high
frequencies, but in this case it is due to spectral artifacts.
Both of these schemes heavily pixelate their outputs, and the
sudden jumps in concentration in their outputs require high-
frequency components to represent in Fourier space. While
they have high energy at high frequencies, it is not because
they are accurately reconstructing the true high-frequency
variability in the ground truth.

The control CNN experiment has a better PSD curve than
the interpolation schemes up until about 4 times the Nyquist
frequency after which it rapidly drops off, whereas the PSD
of the interpolation schemes rapidly decreases beyond the
Nyquist frequency. The CNNs with conservation law en-
forcement have slightly higher PSD at high frequencies than
the one without but show evidence of artifacts similar to bi-
linear interpolation, though much weaker. Because the con-
servation law enforcement operates on 8× 10 pixel blocks,
some evidence of the location of these blocks is noticeable
in the high-resolution output, and this leads to the artifact-
ing. The more skilled CNNs that enforce conservation (CNN-
Enf/Clim and VSR-Enf) do not show much evidence of this
however, which seems to indicate that the increased skill and
ability to reproduce small-scale features reduces the likeli-
hood of pixelation-like artifacts in the output. Both the SISR
CNNs that ingest climatology data and VSR CNNs very
closely match the PSD curve for the ground truth samples.
The VSR schemes are the closest but show a weak periodic
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Figure 6. (a) Zonal power spectral density (PSD) curves (averaged meridionally) for outputs from the various downscaling schemes. The
black curve shows the PSD of the ground truth data, and close proximity to the black curve indicates that a scheme successfully reproduces the
spatial variability of the original data across multiple scales. The vertical black line indicates the highest frequency that can be represented
by the coarsened input data. The CNNs that ingest high-resolution climatology data and the VSR CNNs perform the best. Several of the
schemes show ringing artifacts due to sharp discontinuities in the output associated with the coarsened grid of the input data. (b) The shaded
region indicates the 1st–99th percentile range for PSD curves computed for all samples in the test set, showing the dependence of the result
on sample variability.

signal due to slight pixelation in their output. In any case,
all four of these CNNs very realistically reproduce the zonal
variability in the training dataset even at high frequencies.

Figure 6b shows PSD curves from several select experi-
ments with a 1st–99th percentile shaded region around the
curve computed over all the samples in the test set. This
panel indicates that there is relatively little variability in these
curves due to sample variability in the test set. The shaded
regions very tightly follow the mean, particularly for the
higher-accuracy CNNs.

Lastly, the performance of the VSR schemes is particularly
notable. They not only provide a significant performance en-
hancement over the SISR CNNs in terms of the quantitative
metrics presented in this section, but also produce visually
striking results (Figs. 2 and 3). Some notable features are the
cyclone in the upper right quadrant of Fig. 2b, the plumes
emanating from small point sources in the upper portion of
Fig. 2e, and the sharp gradients associated with South At-
lantic ship tracks and Southern Ocean plumes in Fig. 2h.
Many of these features seem near impossible to infer from
the low-resolution inputs shown to the left of each of these
panels, but by incorporating time dependence, climatology,
and model state variables, the CNNs are able to do it. We
have provided a video supplement (see the “Video supple-
ment” section) that animates O3 output from several of these
super-resolution schemes, and the VSR scheme in particular
is able to produce high-resolution results with smooth time
continuity and closely emulates the high-resolution simula-

tion. To the best of our knowledge, VSR CNNs have not yet
been used to downscale atmospheric data, and their success
here, and superiority to SISR methods, indicates that they
will be an exciting area of research moving forward.

6 Discussion and conclusions

CNN-based super-resolution schemes can very accurately
downscale atmospheric chemistry simulations. In this work,
we demonstrated several new important developments:
CNN-based super-resolution schemes can be effective for
downscaling for large resolution changes. Most of the CNN–
SISR literature focuses on relatively small changes (2× to
4×), and here we have shown that the same schemes can
be applied to perform a 8× by 10× resolution increase to
downscale data between two common model grid resolutions
(2.0◦× 2.5◦ and 0.25◦× 0.25◦). This also demonstrated that
asymmetric resolution changes are feasible simply by modi-
fying the pixel-shuffle upsampling method. We also demon-
strated a new method for strictly enforcing adherence to
physical conservation laws in downscaling CNN outputs. De-
veloping such techniques will be crucial for applying the
capabilities of modern machine learning schemes to phys-
ical science data. Implicitly enforcing adherence to known
physical laws within machine learning architectures can en-
hance the trustworthiness of these schemes and, in some
cases, may improve their accuracy. We incorporated normal-
ization and dimensionalization layers into our CNN architec-
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ture, which allowed it to perform enforcement of conserva-
tion laws on lognormally distributed data, and also found that
in the case of O3 data (that are not lognormally distributed),
enforcing conservation rules can actually improve the per-
formance of the super-resolution schemes. Finally, our re-
sults demonstrate that incorporating the time evolution of the
data into the super-resolution scheme, in this case using a
3D-convolution-based VSR CNN, can provide a significant
improvement in performance over SISR schemes. Most past
research that has used CNNs for downscaling has focused
on SISR schemes, and this work shows that VSR-based su-
per resolution should likely be the focus moving forward. 3D
convolutions are a natural choice for representing the spatial
and temporal dependencies in the data, and data produced by
atmospheric simulations are also a good candidate for VSR
CNN methods because the wind vectors and potentially other
atmospheric state variables can be provided as additional in-
puts to the CNN.

While CNNs represent a huge leap forward in the accu-
racy of downscaling algorithms, they have several drawbacks
that should be addressed. The first, that is specific to our
approach, is that some of the CNNs trained here, particu-
larly those that enforce conservation rules, have a tendency
to introduce artifacts in their outputs at the scale of the grid
used to generate the inputs. We did notice a promising re-
sult that the magnitude of this artifacting was reduced for
the more accurate downscaling CNNs (the VSR CNN and
SISR CNNClim experiments), but it was not completely re-
moved. In future applications, a potential solution is to mod-
ify the loss function with a regularizer term that penalizes
larger-than-average spatial gradients every N th pixel (where
N is the downscaling factor), though this may lead to slightly
reduced performance. There are also several general limita-
tions of using CNNs for downscaling. One is unpredictable
behavior on out-of-sample data or the “covariate shift” prob-
lem (McGovern et al., 2022). This could be a particularly
big issue if a model is trained on a simulation of the cur-
rent climate and applied to simulations in future climate,
where the climatological state of the atmosphere may have
changed. This should be carefully considered when using
the VSR method demonstrated here because it is designed
to memorize the high-resolution climatology of the train-
ing data. For atmospheric chemistry simulations specifically,
long-term changes in point sources due to human activity are
another long-term shift that would need to be addressed. Po-
tential solutions to these problems include providing clima-
tology as an input and recomputing it depending on the time
period being studied, training the CNN on a much longer
simulation that includes different climate states, or using data
augmentation to change the magnitude of certain input fields
during training (though this would require making predic-
tions about how those input fields would be modified in a
future climate). We note that the downsampling enforcement
constraint used in this study does at least partially mitigate
this problem because while CNNs may lose skill on out-

of-sample data, they mathematically cannot produce outputs
that do not downsample to the original input data. Finally,
there are differences between the data produced by low-
resolution simulations and by downsampling high-resolution
simulations. At the very least, the distributions of the input
and training data should be analyzed before using a down-
scaling CNN in this way. Two potential solutions to this is-
sue are training using simulations performed across multiple
resolutions (using a nested mesh for example) or using a con-
ditional generative adversarial network (CGAN) to focus the
CNN on producing plausible small-scale variability with less
dependence on pixel-level errors (Wang et al., 2021).

While the downscaling shown here is a dramatic improve-
ment in skill over both conventional downscaling schemes
and SISR CNNs, there is room for further improvement.
The skill of the VSR CNNs can almost certainly be fur-
ther improved through additional super-parameter tuning and
further experimentation with the CNN architecture. While
there is a large body of research in VSR schemes, virtu-
ally none has been done on applying VSR CNNs to atmo-
spheric simulations. Global chemistry model data have fun-
damental differences from video data; for example, atmo-
spheric motion vectors and other state variables can be pro-
vided directly to the SR schemes instead of motion vectors
estimated from optical flow, atmospheric data do not require
any frame alignment step, the governing equations underly-
ing atmospheric motions are known, and high-resolution cli-
matology is known. Using neural network types better suited
for application to a spherical domain or specific global chem-
istry model grid will also likely provide improved perfor-
mance (Jiang et al., 2019; Weyn et al., 2020). Developing
VSR schemes designed and tuned specifically for use with
atmospheric data is a promising path forward. Another po-
tential area for easy improvement on our scheme is the inclu-
sion of multiple compounds in a single CNN model. Here,
each CNN only processed a single pollutant, but modifying
the same CNNs to process multiple pollutants at once using
multi-channel input and output would be a trivial modifica-
tion (similarly to how CNNs typically are used to process
RGB images). The unique modifications to the CNNs intro-
duced in this paper such as conservation enforcement and in-
ternal standardization layers can all be applied in a channel-
wise fashion. This approach would require prior knowledge
that the set of compounds will always be super-resolved to-
gether but may lead to improved overall accuracy because
the CNN could leverage information across different chem-
ical species. Additionally, other existing CNN techniques
may produce improved results. For example, many SISR
CNNs use adversarial loss functions, and this may further in-
crease the fidelity of the output from atmospheric downscal-
ing schemes. The method for enforcing physical constraints
on the outputs that was introduced here does not preclude
the use of an adversarial loss function, meaning there is po-
tential to develop VSR CNNs that hallucinate hyper-realistic
small-scale variability while strictly adhering to the output of
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the physics-driven low-resolution simulation. This would be
a significant step towards improving the trustworthiness of
GAN-based downscaling, which has been identified as a key
issue when applying GANs to scientific data (McGovern et
al., 2022).

In closing, CNNs and in particular VSR CNNs represent
a leap forward in the capabilities of atmospheric downscal-
ing methods. The approach shown here could dramatically
reduce the computational and energy cost of running simu-
lations at very high resolution. Near-surface concentrations
of the compounds studied here have a significant impact on
human health, and accurately resolving high-resolution fea-
tures, like plumes, is crucial for air-quality forecasting. Fur-
thermore, global chemistry simulations play a key role in un-
derstanding future weather and climate, and accurately re-
solving fine-scale features is critical to this effort. Here we
have demonstrated a method for strictly enforcing conserva-
tion law constraints in a CNN architecture without signifi-
cant loss of accuracy. While current super-resolution CNNs
can produce aesthetically pleasing high-resolution outputs,
development of CNN architectures targeted towards physi-
cal science problems and capable of strictly enforcing physi-
cal constraints will be essential for developing deep-learning
methods compatible with Earth science problems and ca-
pable of generating trustworthy and actionable predictions.
Using the methods introduced here, we envision produc-
ing high-accuracy and high-resolution atmospheric chem-
istry simulations and ensemble forecasts at a fraction of the
current cost.

Appendix A: Additional tables

Table A1. Normalization constants for lognormally distributed
chemical species.

NO2 SO2 CO PM2.5

µ −25.1 −24.4 16.4 1.0
σ 3.0 7.0 0.3 2.0

Table A2. Dates and lat–long boundaries for the sample cases shown in Figs. 2–4.

Sample cases

Compound Shown in Date Latitude range Longitude range

CO Fig. 2a–c 11:30 Z, 1 Jan 2020 4.0◦ S–76.0◦ N 75.0–175.0◦ E
SO2 Fig. 2d–f 11:30 Z, 4 Mar 2020 14.0◦ S–66.0◦ N 259.75–359.75◦ E
NO2 Figs. 2g–i and 4 11:30 Z, 22 Aug 2020 79.0◦ S–1.0◦ N 100.0–200.0◦ E
PM2.5 Fig. 3a–c 11:30 Z, 18 Feb 2020 1.5◦ S–78.5◦ N 37.5◦W–62.5◦ E
O3 Fig. 3d–f 11:30 Z, 4 Apr 2020 11.5◦ S–68.5◦ N 75.0–175.0◦ E

https://doi.org/10.5194/gmd-15-6677-2022 Geosci. Model Dev., 15, 6677–6694, 2022



6692 A. Geiss et al.: Downscaling atmospheric chemistry simulations with physically consistent deep learning

Code availability. The code used for this project is available
from https://github.com/avgeiss/chem_downscaling (last access:
4 January 2022) and has been permanently archived using
Zenodo: https://doi.org/10.5281/zenodo.6502896 (Geiss, 2022a).
Definitions of custom Keras layers can be found in the file
neural_networks.py.

Data availability. The NASA GEOS-CF data used in this work are
available at https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/
v1/das/ (last access: 25 June 2021). Trained CNNs can be
downloaded from https://doi.org/10.5281/zenodo.6784614 (Geiss,
2022b). Note that for training the SISR, CNNs ingest HR data and
downsample them themselves before super-resolving them, so this
layer will need to be removed before application to coarse data.

Video supplement. An animation of simulated, coarsened, inter-
polated, and super-resolved O3 mixing ratios is available from
https://youtu.be/QL_onStfd90 (last access: 1 August 2022) or from
https://doi.org/10.5281/zenodo.6506306 (Geiss, 2022c).
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