Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5195-2022
https://doi.org/10.5194/gmd-15-5195-2022
Model evaluation paper
 | 
07 Jul 2022
Model evaluation paper |  | 07 Jul 2022

Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1

Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli

Related authors

How do convective cold pools influence the boundary-layer atmosphere near two wind turbines in northern Germany?
Jeffrey D. Thayer, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-38,https://doi.org/10.5194/wes-2025-38, 2025
Preprint under review for WES
Short summary
Towards sensible heat flux measurements with fast-response fine-wire platinum resistance thermometers on small multicopter uncrewed aerial systems
Norman Wildmann and Laszlo Györy
EGUsphere, https://doi.org/10.5194/egusphere-2025-241,https://doi.org/10.5194/egusphere-2025-241, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Data assimilation of realistic boundary-layer flows for wind-turbine applications – An LES study
Linus Wrba, Antonia Englberger, Andreas Dörnbrack, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-12,https://doi.org/10.5194/wes-2024-12, 2024
Preprint under review for WES
Short summary
Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023,https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary

Related subject area

Atmospheric sciences
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary

Cited articles

Aumond, P., Masson, V., Lac, C., Gauvreau, B., Dupont, S., and Berengier, M.: Including the drag effects of canopies: real case large-eddy simulation studies, Bound.-Lay. Meteorol., 146, 65–80, 2013. a
Beljaars, A. C. M.: The parametrization of surface fluxes in large-scale models under free convection, Q. J. Roy. Meteor. Soc., 121, 255–270, https://doi.org/10.1002/qj.49712152203, 1995. a
Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W., and Xue, M.: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments, J. Appl. Meteorol. Clim., 45, 63–86, 2006. a
Cuxart, J.: When can a high-resolution simulation over complex terrain be called LES?, Front. Earth Sci., 3, 87, https://doi.org/10.3389/feart.2015.00087, 2015. a
Dupont, S. and Brunet, Y.: Impact of forest edge shape on tree stability: a large-eddy simulation study, Forestry, 81, 299–315, 2008. a
Download
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Share