Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5195-2022
https://doi.org/10.5194/gmd-15-5195-2022
Model evaluation paper
 | 
07 Jul 2022
Model evaluation paper |  | 07 Jul 2022

Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1

Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli

Related authors

Impact of small-scale orography on deep boundary layer evolution and structure over the Tibetan Plateau
Ivan Basic, Harshwardhan Jadhav, Jaydeep Singh, and Juerg Schmidli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4302,https://doi.org/10.5194/egusphere-2025-4302, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impact of model resolution and turbulence scheme on the representation of mountain waves and turbulence
Roshny Siri Jagan and Juerg Schmidli
EGUsphere, https://doi.org/10.5194/egusphere-2025-4308,https://doi.org/10.5194/egusphere-2025-4308, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
How do convective cold pools influence the boundary-layer atmosphere near two wind turbines in northern Germany?
Jeffrey D. Thayer, Gerard Kilroy, and Norman Wildmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-38,https://doi.org/10.5194/wes-2025-38, 2025
Revised manuscript accepted for WES
Short summary
Towards sensible heat flux measurements with fast-response fine-wire platinum resistance thermometers on small multicopter uncrewed aerial systems
Norman Wildmann and Laszlo Györy
EGUsphere, https://doi.org/10.5194/egusphere-2025-241,https://doi.org/10.5194/egusphere-2025-241, 2025
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary

Cited articles

Aumond, P., Masson, V., Lac, C., Gauvreau, B., Dupont, S., and Berengier, M.: Including the drag effects of canopies: real case large-eddy simulation studies, Bound.-Lay. Meteorol., 146, 65–80, 2013. a
Beljaars, A. C. M.: The parametrization of surface fluxes in large-scale models under free convection, Q. J. Roy. Meteor. Soc., 121, 255–270, https://doi.org/10.1002/qj.49712152203, 1995. a
Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W., and Xue, M.: High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments, J. Appl. Meteorol. Clim., 45, 63–86, 2006. a
Cuxart, J.: When can a high-resolution simulation over complex terrain be called LES?, Front. Earth Sci., 3, 87, https://doi.org/10.3389/feart.2015.00087, 2015. a
Dupont, S. and Brunet, Y.: Impact of forest edge shape on tree stability: a large-eddy simulation study, Forestry, 81, 299–315, 2008. a
Download
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Share