Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5127-2022
https://doi.org/10.5194/gmd-15-5127-2022
Development and technical paper
 | Highlight paper
 | 
05 Jul 2022
Development and technical paper | Highlight paper |  | 05 Jul 2022

Towards automatic finite-element methods for geodynamics via Firedrake

D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson

Related authors

Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Analytical solutions for mantle flow in cylindrical and spherical shells
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021,https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Effects of basal drag on subduction dynamics from 2D numerical models
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021,https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017,https://doi.org/10.5194/se-8-899-2017, 2017
Short summary

Related subject area

Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Reconciling Surface Deflections From Simulations of Global Mantle Convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1893,https://doi.org/10.5194/egusphere-2024-1893, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary

Cited articles

Ahrens, J., Geveci, B., and Law, C.: Paraview: An End-User Tool for Large Data Visualization, The Visualization Handbook, Elsevier, 717–731, https://doi.org/10.1016/B978-012387582-2/50038-1, 2005. a
Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., Wilcox, L. C., and Ghattas, O.: Slab stress and strain rate as constraints on global mantle flow, Geophys. Res. Lett., 37, L22308, https://doi.org/10.1029/2010GL045312, 2010. a
Alnes, M. S., Logg, A., Olgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: A domain-specific language for weak formulations of partial differential equations, ACM T. Math. Softw., 40, 2–9, 2014. a, b, c, d, e
Amestoy, P., Duff, I. S., Koster, J., and L'Excellent, J.-Y.: A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM J. Matrix Anal. A., 23, 15–41, 2001. a
Amestoy, P., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM T. Math. Softw. 45, 2:1–2:26, 2019. a
Download
Executive editor
This paper introduces Firedrake, a new automatic system to generate code and solve partial differential equations using finite element methods. This capability is a core need of many models, and consequently a source of significant redundant software development effort. Because it does not prescribe a particular set of equations, the Firedrake software is applicable to a wide range of geoscientific models. Firedrake demonstrates remarkable computational efficiency, scaling beyond 12,000 computing cores. It is also free-libre open source software, contributing to improvements in scientific computational replicability and reproducibility.
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.