Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5127-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-5127-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards automatic finite-element methods for geodynamics via Firedrake
D. Rhodri Davies
CORRESPONDING AUTHOR
Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
Stephan C. Kramer
Department of Earth Science and Engineering, Imperial College London, London, UK
Sia Ghelichkhan
Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
Angus Gibson
Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
Related authors
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168, https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Melting ice sheets drive solid Earth deformation and sea-level change on timescales of decades to thousands of years. Here, we present G-ADOPT, which models movement of the solid Earth in response to surface loads. It has flexibility in domain geometry, deformation mechanism parameterisation, and is scalable on high performance computers. Automatic derivation of adjoint sensitivity kernels also provides a means to assimilate historical and modern observations into future sea-level forecasts.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168, https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Melting ice sheets drive solid Earth deformation and sea-level change on timescales of decades to thousands of years. Here, we present G-ADOPT, which models movement of the solid Earth in response to surface loads. It has flexibility in domain geometry, deformation mechanism parameterisation, and is scalable on high performance computers. Automatic derivation of adjoint sensitivity kernels also provides a means to assimilate historical and modern observations into future sea-level forecasts.
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025, https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Short summary
Accurate numerical studies of glaciers often require high-resolution simulations, which often prove too demanding even for modern computers. In this paper we develop a method that identifies whether different parts of a glacier require high or low resolution based on its physical features, such as its thickness and velocity. We show that by doing so we can achieve a more optimal simulation accuracy for the available computing resources compared to uniform-resolution simulations.
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024, https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modeling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
Cited articles
Ahrens, J., Geveci, B., and Law, C.: Paraview: An End-User Tool for Large Data Visualization, The Visualization Handbook, Elsevier, 717–731,
https://doi.org/10.1016/B978-012387582-2/50038-1, 2005. a
Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., Wilcox, L. C., and Ghattas, O.: Slab stress and strain rate as constraints on global mantle flow, Geophys. Res. Lett., 37, L22308, https://doi.org/10.1029/2010GL045312, 2010. a
Amestoy, P., Duff, I. S., Koster, J., and L'Excellent, J.-Y.: A Fully
Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM
J. Matrix Anal. A., 23, 15–41, 2001. a
Amestoy, P., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and
Scalability of the Block Low-Rank Multifrontal Factorization on Multicore
Architectures, ACM T. Math. Softw. 45, 2:1–2:26,
2019. a
Austermann, J., Kaye, B., Mitrovica, J., and Huybers, P.: A statistical
analysis of the correlation between large igneous provinces and lower mantle
seismic structure, Geophys. J. Int., 197, 1–9, https://doi.org/10.1093/gji/ggt500,
2014. a
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D.,
Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp,
K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc
Users Manual, Tech. Rep. ANL-95/11 – Revision 3.15, Argonne National
Laboratory, https://www.mcs.anl.gov/petsc (last access: 1 May 2022),
2021a. a, b, c, d, e, f, g
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D.,
Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp,
K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc
Web page, https://www.mcs.anl.gov/petsc (last access: 1 May 2022),,
2021b. a, b, c, d, e, f
Bangerth, W., Hartmann, R., and Kanschat, G.: deal.II – A general-purpose
object-oriented finite element library, ACM T. Math. Software, 33, 42-es,
https://doi.org/10.1145/1268776.1268779, 2007. a
Bangerth, W., Dannberg, J., Gassmoeller, R., and Heister, T.: ASPECT v2.2.0,
Zenodo [code], https://doi.org/10.5281/zenodo.3924604, 2020. a, b
Baumgardner, J. R.: Three-dimensional treatment of convective flow in the
Earth's mantle, J. Stat. Phys., 39, 501–511, https://doi.org/10.1007/BF01008348,
1985. a, b
Bercovici, D., Schubert, G., and Glatzmaier, G. A.: Three-dimensional
convection of an infinite-Prandtl-number compressible fluid in a basally
heated spherical shell, J. Fluid Mech., 239, 683–719, 1992. a
Beucher, R., Moresi, L., Giordani, J., Mansour, J., Sandiford, D., Farrington,
R., Mondy, L., Mallard, C., Rey, P., Duclaux, G., Kaluza, O., Laik, A., and
Morón, S.: UWGeodynamics: A teaching and research tool for numerical
geodynamic modelling, J. Open Source Softw., 4, 1136,
https://doi.org/10.21105/joss.01136, 2019. a
Birch, F.: Elasticity and constitution of the Earth's interior, J. Geophys.
Res., 57, 227–286, 1952. a
Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen,
U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P.,
Schmeling, H., and Schnaubelt, T.: A benchmark comparison for mantle
convection codes, Geophys. J. Int., 98, 23–38,
https://doi.org/10.1111/j.1365-246X.1989.tb05511.x, 1989. a, b, c, d, e, f, g, h, i, j, k
Bower, D. J., Gurnis, M., and Seton, M.: Lower mantle structure from
paleogeographically constrained dynamic Earth models, Geochem. Geophy.
Geosy., 14, 44–63, https://doi.org/10.1029/2012GC004267, 2013. a, b, c
Bunge, H., Richards, M. A., and Baumgardner, J. R.: Mantle circulation models
with sequential data-assimilation: inferring present-day mantle structure
from plate motion histories, Philos. T. R. Soc. Lond. A, 360,
2545–2567, https://doi.org/10.1098/rsta.2002.1080, 2002. a, b
Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: The effect of
depth–dependent viscosity on the planform of mantle convection, Nature, 279,
436–438, https://doi.org/10.1038/379436a0, 1996. a
Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: A sensitivity study of
3-D-spherical mantle convection at 108 Rayleigh number: effects of
depth-dependent viscosity, heating mode and an endothermic phase change, J.
Geophys. Res., 102, 11991–12007, https://doi.org/10.1029/96JB03806, 1997. a, b
Bunge, H.-P., Hagelberg, C. R., and Travis, B. J.: Mantle circulation models
with variational data assimilation: inferring past mantle flow and structure
from plate motion histories and seismic tomography, Geophys. J. Int., 152,
280–301, https://doi.org/10.1046/j.1365-246X.2003.01823.x, 2003. a
Burstedde, C., Wilcox, L. C., and Ghattas, O.:
p4est
: Scalable
Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees, SIAM
J. Sci. Comput., 33, 1103–1133, https://doi.org/10.1137/100791634,
2011. a
Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., and
Ghattas, O.: Large-scale adaptive mantle convection simulation, Geophys. J.
Int., 192, 889–906, https://doi.org/10.1093/gji/ggs070, 2013. a, b
Busse, F. H., Christensen, U., Clever, R., Cserepes, L., Gable, C.,
Giannandrea, E., Guillou, L., Houseman, G., Nataf, H. C., Ogawa, M.,
Parmentier, M., Sotin, C., and Travis, B.: 3D convection at infinite
Prandtl number in Cartesian geometry - a benchmark comparison, Geophys.
Astro. Fluid, 75, 39–59, https://doi.org/10.1080/03091929408203646, 1994. a, b, c, d, e, f, g, h, i, j
Choblet, G., Cadek, O., Couturier, F., and Dumoulin, C.: OEDIPUS: a new tool
to study the dynamics of planetary interiors, Geophys. J. Int., 170, 9–30,
https://doi.org/10.1111/j.1365-246X.2007.03419.x, 2007. a, b
Cockburn, B. and Shi, K.: Devising HDG methods for Stokes flow: An overview,
Comput. Fluids, 98, 221–229, https://doi.org/10.1016/j.compfluid.2013.11.017,
2014. a
Colli, L., Ghelichkhan, S., Bunge, H., and Oeser, J.: Retrodictions of Mid
Paleogene mantle flow and dynamic topography in the Atlantic region from
compressible high resolution adjoint mantle convection models: Sensitivity to
deep mantle viscosity and tomographic input model, Gondwana Res., 53,
252–272, https://doi.org/10.1029/2018GL077338, 2018. a
Dalcin, L., Kler, P. A., Paz, R. R., and Cosimo, A.: Parallel Distributed
Computing using Python, Adv. Water Res., 34, 10.1016/j.advwatres.2011.04.013,
2011. a
Davies, D. R. and Davies, J. H.: Thermally–driven mantle plumes reconcile
multiple hotspot observations, Earth Planet. Sc. Lett., 278, 50–54,
https://doi.org/10.1016/j.epsl.2008.11.027, 2009. a
Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity: a fully unstructured
anisotropic adaptive mesh computational modeling framework for geodynamics,
Geochem. Geophy. Geosy., 120, Q06001, https://doi.org/10.1029/2011GC003551, 2011. a, b, c
Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H., and
Ritsema, J.: Reconciling dynamic and seismic models of Earth's lower
mantle: the dominant role of thermal heterogeneity, Earth Planet. Sc. Lett.,
353–354, 253–269, https://doi.org/10.1016/j.epsl.2012.08.016, 2012. a, b, c, d
Davies, D. R., Davies, J. H., Bollada, P. C., Hassan, O., Morgan, K., and Nithiarasu, P.: A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling, Geosci. Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, 2013. a, b, c, d
Davies, D. R., Goes, S., and Lau, H. C. P.: Thermally Dominated Deep Mantle
LLSVPs: A Review, in: The Earth's Heterogeneous Mantle, edited by: Khan, A.
and Deschamps, F., Springer International Publishing, 441–477,
https://doi.org/10.1007/978-3-319-15627-9_14, 2015a. a, b
Davies, D. R., Goes, S., and Sambridge, M.: On the relationship between
volcanic hotspot locations, the reconstructed eruption sites of large igneous
provinces and deep mantle seismic structure, Earth Planet. Sc. Lett., 411,
121–130, https://doi.org/10.1016/j.epsl.2014.11.052, 2015b. a
Davies, D. R., Le Voci, G., Goes, S., Kramer, S. C., and Wilson, C. R.: The
mantle wedge's transient 3-D flow regime and thermal structure, Geochem.
Geophy. Geosy., 17, 78–100, https://doi.org/10.1002/2015GC006125, 2016. a
Davies, D. R., Kramer, S., Ghelichkhan, S., and Gibson, A.: g-adopt/g-adopt: v1.2.0 (v1.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.6762752, 2022. a
Davies, G. F.: Dynamic Earth: plates, plumes and mantle convection, Cambridge
University Press, https://doi.org/10.1017/CBO9780511605802, 1999. a
Donea, J. and Huerta, A.: Finite element methods for flow problems, John Wiley
& Sons, Ltd, https://doi.org/10.1002/0470013826, 2003. a
Elman, H. C., Silvester, D. J., and Wathen, A. J.: Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics, Oxford
University Press, https://doi.org/10.1093/acprof:oso/9780199678792.001.0001, 2005. a
Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M. E.: Automated
derivation of the adjoint of high-level transient finite element programs,
SIAM J. Sci. Comput., 35, C369–C393, 2013. a
firedrake-zenodo: Software used in “Towards Automatic Finite Element Methods for Geodynamics via Firedrake” (Firedrake_20220506.0), Zenodo [code], https://doi.org/10.5281/zenodo.6522930, 2022. a
Flament, N., Bodur, Ö. F., Williams, S. E., and Merdith, A. S.: Assembly
of the basal mantle structure beneath Africa, Nature, 603, 846–851, 2022. a
French, S. W. and Romanowicz, B.: Broad plumes rooted at the base of the
Earth's mantle beneath major hotspots, Nature, 525, 95–99,
https://doi.org/10.1038/nature14876, 2015. a
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson,
C. R.: Interaction of subducted slabs with the mantle transition-zone: A
regime diagram from 2-D thermo-mechanical models with a mobile trench and
an overriding plate, Geochem. Geophy. Geosy., 15, 1739–1765,
https://doi.org/10.1002/2014GC005257, 2014. a
Gassmoller, R., Dannberg, J., Bangerth, W., Heister, T., and Myhill, R.: On
formulations of compressible mantle convection, Geophys. J. Int., 221,
1264–1280, https://doi.org/10.1093/gji/ggaa078, 2020. a
Ghelichkhan, S. and Bunge, H.: The adjoint equations for thermochemical
compressible mantle convection: derivation and verification by twin
experiments, Proc. Roy. Soc. A, 474, 20180329,
https://doi.org/10.1098/rspa.2018.0329, 2018. a
Ghelichkhan, S., Murbock, M., Colli, L., Pail, R., and Bunge, H.: On the
observability of epeirogenic movement in current and future gravity missions,
Gondwana Res., 53, 273–284, https://doi.org/10.1016/j.gr.2017.04.016, 2018. a
Ghelichkhan, S., Bunge, H., and Oeser, J.: Global mantle flow retrodictions for
the early Cenozoic using an adjoint method: evolving dynamic topographies,
deep mantle structures, flow trajectories and sublithospheric stresses,
Geophys. J. Int., 226, 1432–1460, https://doi.org/10.1093/gji/ggab108, 2020. a
Gibson, T. H., McRae, A. T. T., Cotter, C. J., Mitchell, L., and Ham, D. A.:
Compatible Finite Element Methods for Geophysical Flows: Automation and
Implementation using Firedrake, Springer International Publishing,
https://doi.org/10.1007/978-3-030-23957-2, 2019. a, b, c, d
Glatzmaier, G. A.: Numerical simulations of mantle convection-time dependent,
3-dimensional, compressible, spherical-shell, Geophys. Astro. Fluid,
43, 223–264, 1988. a
Gurnis, M., Yang, T., Cannon, J., Turner, M., Williams, S., Flament, N., and
Müller, R. D.: Global tectonic reconstructions with continuously
deforming and evolving rigid plates, Comput. Geosci., 116, 32–41,
https://doi.org/10.1016/j.cageo.2018.04.007, 2012. a
Ham, D. A., Farrell, P. E., Gorman, G. J., Maddison, J. R., Wilson, C. R., Kramer, S. C., Shipton, J., Collins, G. S., Cotter, C. J., and Piggott, M. D.: Spud 1.0: generalising and automating the user interfaces of scientific computer models, Geosci. Model Dev., 2, 33–42, https://doi.org/10.5194/gmd-2-33-2009, 2009. a
Hassan, R., Flament, N., Gurnis, M., Bowe, D. J., and Müller, R. D.:
Provenance of plumes in global convection models, Geochem. Geophy. Geosy.,
16, 1465–1489, https://doi.org/10.1002/2015GC005751, 2015. a
Heister, T., Dannberg, J., Gassmoller, R., and Bangerth, W.: High accuracy
mantle convection simulation through modern numerical methods – II:
Realistic models and problems, Geophys. J. Int., 210, 833–851,
https://doi.org/10.1093/gji/ggx195, 2017. a
Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J.,
Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T.,
Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M.,
Williams, A., and Stanlet, K. S.: An overview of the Trilinos project, ACM
T. Math. Software, 31, 397–423, https://doi.org/10.1145/1089014.1089021, 2005. a
Hillebrand, B., Thieulot, C., Geenen, T., van den Berg, A. P., and Spakman, W.: Using the level set method in geodynamical modeling of multi-material flows and Earth's free surface, Solid Earth, 5, 1087–1098, https://doi.org/10.5194/se-5-1087-2014, 2014. a
Hillewaert, K.: Development of the discontinuous Galerkin method for
high-resolution, large scale CFD and acoustics in industrial geometries, PhD
Thesis, Université de Louvain, 2013. a
Homolya, M., Mitchell, L., Luporini, F., and Ham, D.: Tsfc: a
structure-preserving form compiler, SIAM J. Sci. Comput., 40, 401–428,
https://doi.org/10.1137/17M1130642, 2018. a, b, c
Hunt, S. A., Davies, D. R., Walker, A. M., McCormack, R. J., Wills, A. S.,
Dobson, D. P., and Li, L.: On the increase in thermal diffusivity caused by
the perovskite to post-perovskite phase transition and its implications for
mantle dynamics, Earth Planet. Sc. Lett., 319, 96–103,
https://doi.org/10.1016/j.epsl.2011.12.009, 2012. a
Jadamec, M. A.: Insights on slab-driven mantle flow from advances in
three-dimensional modelling, J. Geodynam., 100, 51–70, 2016. a
Jadamec, M. A. and Billen, M. I.: Reconciling surface plate motions with rapid
three-dimensional mantle flow around a slab edge, Nature, 465, 338–341,
2010. a
Jarvis, G. T.: Effects of curvature on two–dimensional models of mantle
convection: cylindrical polar coordinates, J. Geophys. Res., 98, 4477–4485,
1993. a
Jarvis, G. T. and McKenzie, D. P.: Convection in a compressible fluid with
infinite Prandtl number, J. Fluid Mech., 96, 515–583,
https://doi.org/10.1017/S002211208000225X, 1980. a
Katz, R. F. and Weatherley, S. M.: Consequences of mantle heterogeneity for
melt extraction at mid-ocean ridges, Earth Planet. Sc. Lett., 335, 226–237,
https://doi.org/10.1016/j.epsl.2012.04.042, 2012. a
Kirby, R. C.: Algorithm 839: FIAT, a new paradigm for computing finite
element basis functions, ACM T. Math. Software, 30, 502–516, 2004. a
Kirby, R. C. and Mitchell, L.: Solver Composition Across the PDE/Linear
Algebra Barrier, SIAM J. Sci. Comput., 40, 76–98, https://doi.org/10.1137/17M1133208,
2018. a, b
Knepley, M. G. and Karpeev, D. A.: Mesh Algorithms for PDE with Sieve I: Mesh
Distribution, Sci. Program., 17, 215–230, 2009. a
Koelemeijer, P. J., Schuberth, B. S. A., Davies, D. R., Deuss, A., and Ritsema,
J.: Constraints on the presence of post-perovskite in Earth's lowermost
mantle from tomographic-geodynamic model comparisons, Geophys. J. Int., 494,
226–238, 2018. a
Kramer, S. C., Cotter, C. J., and Pain, C. C.: Solving the Poisson equation on
small aspect ratio domains using unstructured meshes, Ocean Model., 35,
253–263, 2010. a
Kramer, S. C., Wilson, C. R., and Davies, D. R.: An implicit free-surface
algorithm for geodynamical simulations, Phys. Earth Planet. In., 194,
25–37, https://doi.org/10.1016/j.pepi.2012.01.001, 2012. a, b
Kramer, S. C., Wilson, C., Davies, D. R., Mathews, C., Gibson, A., Dubernay,
T., Greaves, T., Candy, A., Cotter, C. J., Percival, J., Mouradian, S.,
Bhutani, G., Avdis, A., Gorman, G., Piggott, M., and Ham, D.:
FluidityProject/fluidity: Zenodo release, Zenodo [code], https://doi.org/10.5281/zenodo.3924604,
2021b. a
Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle convection
simulation through modern numerical methods, Geophys. J. Int., 191, 12–29,
https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012. a, b
Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D., and Baptista, A. M.: Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations, Geosci. Model Dev., 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018, 2018. a
Lange, M., Mitchell, L., Knepley, M. G., and Gorman, G. J.: Efficient mesh
management in Firedrake using PETSc-DMPlex, SIAM J. Sci.
Comput., 38, S143–S155, https://doi.org/10.1137/15M1026092, 2016. a
Le Voci, G., Davies, D. R., Goes, S., Kramer, S. C., and Wilson, C. R.: A
systematic 2-D investigation into the mantle wedge's transient flow regime
and thermal structure: complexities arising from a hydrated rheology and
thermal buoyancy, Geochem. Geophy. Geosy., 15, 28–51,
https://doi.org/10.1002/2013GC005022, 2014. a
Leng, W. and Zhong, S.: Viscous heating, adiabatic heating and energetic
consistency in compressible mantle convection, Geophys. J. Int., 173,
693–702, 2008. a
Li, D., Gurnis, M., and Stadler, G.: Towards adjoint-based inversion of
time-dependent mantle convection with nonlinear viscosity, Geophys. J. Int.,
209, 86–105, https://doi.org/10.1093/gji/ggw493, 2017. a
Liu, L., Spasojevic, S., and Gurnis, M.: Reconstructing Farallon Plate
Subduction Beneath North America Back to the Late Cretaceous, Science,
322, 934–938, https://doi.org/10.1126/science.1162921, 2008. a
Maljaars, J. M., Richardson, C. N., and Sime, N.: LEoPart: A particle library
for FEniCS, Comp. Math. Appl., 81, 289–315, 2021. a
Markall, G. R., Rathgeber, F., Mitchell, L., Loriant, N., Bertolli, C., Ham,
D. A., and Kelly, P. H. J.: Performance-Portable Finite Element Assembly
Using PyOP2 and FEniCS, in: 28th International Supercomputing Conference,
ISC, Proceedings, edited by: Kunkel, J. M., Ludwig, T., and Meuer, H. W., vol.
7905 of Lecture Notes in Computer Science, Springer, 279–289,
https://doi.org/10.1007/978-3-642-38750-0_21, 2013. a
McKenzie, D.: Speculations on consequences and causes of plate motions,
Geophys. J. Roy. Astr. S., 18, 1–18, 1969. a
McKenzie, D. P., Roberts, J. M., and Weiss, N. O.: Numerical models of
convection in the Earth's mantle, Tectonophys., 19, 89–103,
https://doi.org/10.1016/0040-1951(73)90034-6, 1973. a, b
Minear, J. and Toksoz, M.: Thermal regime of a downgoing slab and new global
tectonics, J. Geophys. Res., 75, 1397–1419, 1970. a
Mitush, S. K., Funke, S. W., and Dokken, J. S.: dolfin-adjoint 2018.1:
automated adjoints for FEniCS and Firedrake, J. Open Source Softw., 4, 1292, https://doi.org/10.21105/joss.01292,
2019. a
Moresi, L., Dufour, F., and Muhlhaus, H.: Mantle convection modeling with
viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic
modeling, Pure Appl. Geophys., 159, 2335–2356, 2002. a
Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Muhlhaus,
H.-B.: Computational approaches to studying non-linear dynamics of the crust
and mantle, Phys. Earth Planet. In., 163, 69–82,
https://doi.org/10.1016/j.pepi.2007.06.009, 2007. a
Moresi, L. N. and Solomatov, V. S.: Numerical investigations of 2D convection
with extremely large viscosity variations, Phys. Fluid, 7, 2154–2162,
https://doi.org/10.1063/1.868465, 1995. a
Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J.,
Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N.,
Hosseinpour, M., Bower, D. J., and Cannon, J.: Ocean Basin Evolution and
Global-Scale Plate Reorganization Events Since Pangea Breakup, Annu. Rev.
Earth Pl. Sc., 44, 107–138, https://doi.org/10.1146/annurev-earth-060115-012211,
2016. a, b, c, d
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams,
S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.:
GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophy.
Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018. a
Nakagawa, T., Tackley, P. J., Deschamps, F., and Connolly, J. A. D.:
Incorporating self–consistently calculated mineral physics into
thermo–chemical mantle convection simulations in a 3-D spherical shell and
its influence on seismic anomalies in Earth's mantle, Geochem. Geophy.
Geosy., 10, Q3304, https://doi.org/10.1029/2008GC002280, 2009. a
Nerlich, R., Colli, L., Ghelichkhan, S., Schuberth, B., and Bunge, H.-P.:
Constraining entral Neo-Tethys Ocean reconstructions with mantle convection
models, Geophys. Res. Lett., 43, 9595–9603, https://doi.org/10.1002/2016GL070524,
2016. a
Nitsche, J.: Über ein Variationsprinzip zur Lösung von
Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen
Randbedingungen unterworfen sind, in: Abhandlungen aus dem mathematischen
Seminar der Universität Hamburg, Springer, vol. 36, 9–15,
https://doi.org/10.1007/BF02995904, 1971. a
Quenette, S., Moresi, L., Appelbe, B. F., and Sunter, P. D.: Explaining
StGermain: an aspect oriented environment for building extensible
computational mechanics modeling software, IEEE International Parallel and
Distributed Processing Symposium, IEEE New York, 210 pp.,
https://doi.org/10.1109/IPDPS.2007.370400, 2007. a
Ratcliff, J. T., Schubert, G., and Zebib, A.: Steady tetrahedral and cubic
patterns of spherical shell convection with temperature-dependent viscosity,
J. Geophys. Res., 101, 25473–25484, https://doi.org/10.1029/96JB02097, 1996. a, b, c
Rathgeber, F., Markall, G. R., Mitchell, L., Loriant, N., Ham, D. A., Bertolli,
C., and Kelly, P. H. J.: PyOP2: A High-Level Framework for
Performance-Portable Simulations on Unstructured Meshes, in: High Performance
Computing, Networking Storage and Analysis, SC Companion,
IEEE Computer Society, Los Alamitos, CA, USA, 1116–1123,
https://doi.org/10.1109/SC.Companion.2012.134, 2012. a
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.
T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake:
Automating the Finite Element Method by Composing Abstractions, ACM T.
Math. Softw., 43, 1–27, https://doi.org/10.1145/2998441, 2016. a, b, c, d, e, f, g, h, i, j
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a
degree-40 shear-velocity model for the mantle from new Rayleigh wave
dispersion, teleseismic traveltime and normal-mode splitting function
measurements, Geophys. J. Int., 184, 1223–1236,
https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011. a
Rubey, M., Brune, S., Heine, C., Davies, D. R., Williams, S. E., and Müller, R. D.: Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs, Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, 2017. a
Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm, SIAM J.
Sci. Comput., 14, 461–469, 1993. a
Schuberth, B. S. A., H.-P. Bunge, Steinle-Neumann, G., Moder, C., and
Oeser, J.: Thermal versus elastic heterogeneity in high-resolution mantle
circulation models with pyrolite composition: high plume excess temperatures
in the lowermost mantle, Geochem. Geophy. Geosy., 10, Q01W01,
https://doi.org/10.1029/2008GC002235, 2009. a
Shahbazi, K.: An explicit expression for the penalty parameter of the interior
penalty method, J. Comput. Phys., 205, 401–407, 2005. a
Shapero, D. R., Badgeley, J. A., Hoffman, A. O., and Joughin, I. R.: icepack: a new glacier flow modeling package in Python, version 1.0, Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, 2021. a
Shih, Y., Stadler, G., and Wechsung, F.: Robust multigrid techniques for
augmented Lagrangian preconditioning of incompressible Stokes equations with
extreme viscosity variations, arXiv [preprint], arXiv:2107.00820, 2021. a
Shipton, J., Gibson, T., and Cotter, C.: Higher-order compatible finite element
schemes for the nonlinear rotating shallow water equations on the sphere, J. Comput. Phys.,
375, 1121–1137, https://doi.org/10.1016/j.jcp.2018.08.027, 2018. a
Spiegelman, M., May, D. A., and Wilson, C. R.: On the solvability of
incompressible Stokes with viscoplastic rheologies in geodynamics,
Geochem. Geophy. Geosy., 17, 2213–2238,
https://doi.org/10.1002/2015GC006228, 2016. a, b, c
Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas,
O.: The dynamics of plate tectonics and mantle flow: from local to global
scales, Science, 329, 1033–1038, https://doi.org/10.1126/science.1191223, 2010. a, b
Stemmer, K., Harder, H., and Hansen, U.: A new method to simulate convection
with strongly temperature- and pressure-dependent viscosity in a spherical
shell: Applications to the Earth's mantle, Phys. Earth Planet. In., 157,
223–249, https://doi.org/10.1016/j.pepi.2006.04.007, 2006. a, b
Styles, E., Davies, D. R., and Goes, S.: Mapping spherical seismic into
physical structure: biases from 3-D phase-transition and thermal
boundary-layer heterogeneity, Geophys. J. Int., 184, 1371–1378,
https://doi.org/10.1111/j.1365-246X.2010.04914.x, 2011. a
Tackley, P. J.: Effects of strongly variable viscosity on three–dimensional
compressible convection in planetary mantles, J. Geophys. Res., 101,
3311–3332, https://doi.org/10.1029/95JB03211, 1996. a
Tackley, P. J.: Mantle convection and plate tectonics: towards and integrated
physical and chemical theory, Science, 288, 2002–2007, 2000. a
Tackley, P. J.: Modelling compressible mantle convection with large viscosity
contrasts in a three-dimensional spherical shell using the Yin-Yang grid,
Phys. Earth Planet. In., 171, 7–18, https://doi.org/10.1016/j.pepi.2008.08.005, 2008. a, b, c
Tackley, P. J. and Xie, S.: The thermo-chemical structure and evolution of
Earth's mantle: constraints and numerical models, Philos. T. R. Soc.
Lond. A., 360, 2593–2609, 2002. a
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects
of an endothermic phase transition at 670 km depth in a spherical model of
convection in the Earth's mantle, Nature, 361, 699–704,
https://doi.org/10.1038/361699a0, 1993. a
Thieulot, C. and Bangerth, W.: On the choice of finite element for applications in geodynamics, Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, 2022. a, b
Torrance, K. E. and Turcotte, D. L.: Thermal convection with large viscosity
variations, J. Fluid Mech., 47, 113–125, 1971. a
Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierová, P., Samuel, H.,
Davies, D. R., Wilson, C. R., Kramer, S. C., Thieulot, C., Glerum, A.,
Fraters, M., Spakman, W., Rozel, A., and Tackley, P. J.: A community
benchmark for viscoplastic thermal convection in a 2-D square box,
Geochem. Geophy. Geosy., 16, 2175–2196,
https://doi.org/10.1002/2015GC005807, 2015. a, b, c, d, e, f, g, h, i, j, k
Trilinos Project Team, T.: The Trilinos Project Website, https://trilinos.github.io, last access: 22 May 2020. a
Trompert, R. and Hansen, U.: Mantle convection simulations with rheologies that
generate plate-like behaviour, Nature, 395, 686–689, 1998. a
van Keken, P.: Evolution of starting mantle plumes: a comparison between
numerical and laboratory models, Earth Planet. Sc. Lett., 148, 1–11,
https://doi.org/10.1016/S0012-821X(97)00042-3, 1997. a
van Keken, P. E. and Ballentine, C. J.: Whole–mantle versus layered mantle
convection and the role of a high–viscosity lower mantle in terrestrial
volatile evolution, Earth Planet. Sc. Lett., 156, 19–32, 1998. a
Vanek, P., Mandel, J., and Brezina, M.: Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems, Computing, 56,
179–196, https://doi.org/10.1007/BF02238511, 1996. a
Vynnytska, L., Rognes, M. E., and Clark, S. R.: Benchmarking FEniCS for
mantle convection simulations, Compu. Geosci., 50, 95–105,
https://doi.org/10.1016/j.cageo.2012.05.012, 2013. a, b
Wilson, C. R., Spiegelman, M., van Keken, P. E., and R., H. B.: Fluid flow in
subduction zones: The role of solid rheology and compaction pressure, Earth
Planet. Sc. Lett., 401, 261–274, https://doi.org/10.1016/j.epsl.2014.05.052, 2014. a
Wolstencroft, M., Davies, J. H., and Davies, D. R.: Nusselt-Rayleigh number
scaling for spherical shell Earth mantle simulation up to a Rayleigh
number of 109, Phys. Earth Planet. In., 176, 132–141,
https://doi.org/10.1016/j.pepi.2009.05.002, 2009.
a
Yoshida, M. and Kageyama, A.: Application of the Yin-Yang grid to a thermal
convection of a Boussinesq fluid with infinite Prandtl number in a
three-dimensional spherical shell, Geophys. Res. Lett., 31, L12609,
https://doi.org/10.1029/2004GL019970, 2004. a, b
Zhong, S., Zuber, M. T., Moresi, L., and Gurnis, M.: Role of
temperature-dependent viscosity and surface plates in spherical shell models
of mantle convection, J. Geophys. Res., 105, 11063–11082,
https://doi.org/10.1029/2000JB900003, 2000. a
Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z.: The finite element method: its basis and fundamentals, Elsevier, ISBN 9780080472775, 2005. a
Executive editor
This paper introduces Firedrake, a new automatic system to generate code and solve partial differential equations using finite element methods. This capability is a core need of many models, and consequently a source of significant redundant software development effort. Because it does not prescribe a particular set of equations, the Firedrake software is applicable to a wide range of geoscientific models. Firedrake demonstrates remarkable computational efficiency, scaling beyond 12,000 computing cores. It is also free-libre open source software, contributing to improvements in scientific computational replicability and reproducibility.
This paper introduces Firedrake, a new automatic system to generate code and solve partial...
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Firedrake is a state-of-the-art system that automatically generates highly optimised code for...
Special issue