Articles | Volume 15, issue 10
https://doi.org/10.5194/gmd-15-4077-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4077-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of vertical ship exhaust plume distributions on urban pollutant concentration – a sensitivity study with MITRAS v2.0 and EPISODE-CityChem v1.4
Ronny Badeke
CORRESPONDING AUTHOR
Hereon Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum
Hereon GmbH, 21502 Geesthacht, Germany
Volker Matthias
Hereon Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum
Hereon GmbH, 21502 Geesthacht, Germany
Matthias Karl
Hereon Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum
Hereon GmbH, 21502 Geesthacht, Germany
David Grawe
Center for Earth System Research and Sustainability (CEN),
Meteorological Institute, Universität Hamburg, 20146 Hamburg, Germany
Related authors
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Hiram Abif Meza-Landero, Julia Bruckert, Ronny Petrick, Pascal Simon, Heike Vogel, Volker Matthias, Johannes Bieser, and Martin Ramacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-2289, https://doi.org/10.5194/egusphere-2025-2289, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To understand how persistent hazardous industrial chemicals travel through the air and are deposited back on Earth's surface, we created a new computer model that combines meteorology and chemistry in clouds and clean air. Using the most recent global emissions data, this model represents the trajectory and changes of these chemicals, matching patterns in many areas and overlooking others. The work seeks to improve global monitoring and modeling of hazardous chemicals.
Karolin Sarah Samsel, Marita Boettcher, David Grawe, K. Heinke Schlünzen, and Kevin Sieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-2464, https://doi.org/10.5194/egusphere-2024-2464, 2025
Short summary
Short summary
A microscale, obstacle-resolving meteorological model has been extended with a snow cover and precipitation scheme making it the first model of its kind that includes rain and snow. The model allows first estimates on the influence of different city characteristics on precipitation heterogeneities. The performance of the model extension is assessed by comparing the results of different model versions. For the comparisons, threshold values were derived based on computational accuracy.
Pascal Simon, Martin Otto Paul Ramacher, Stefan Hagemann, Volker Matthias, Hanna Joerss, and Johannes Bieser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-236, https://doi.org/10.5194/essd-2024-236, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Per- and Polyfluorinated Alkyl Substances (PFAS) constitute a group of often toxic, persistent, and bioaccumulative substances. We constructed a global Emissions model and inventory based on multiple datasets for 23 widely used PFAS. The model computes temporally and spatially resolved model ready emissions distinguishing between emissions to air and emissions to water covering the time span from 1950 up until 2020 on an annual basis to be used for chemistry transport modelling.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021, https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
Short summary
COVID-19 lockdown measures in spring 2020 led to cleaner air in central Europe. Densely populated areas benefitted mainly from largely reduced NO2 concentrations, while rural areas experienced lower reductions in NO2 but also lower ozone concentrations. Very low particulate matter (PM) concentrations in parts of Europe were not an effect of lockdown measures. Model simulations show that modified weather conditions are more significant for ozone and PM than severe traffic emission reductions.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
Cited articles
Abrutytė, E., Žukauskaitė, A., Mickevičienė, R.,
Zabukas, V., and Paulauskienė, T.: Evaluation of NOx emission and
dispersion from marine ships in Klaipeda Sea port, J. Environ. Eng. Landsc.,
22,
264–273, https://doi.org/10.3846/16486897.2014.892009, 2014.
Aksoyoglu, S., Baltensperger, U., and Prévôt, A. S. H.: Contribution of ship emissions to the concentration and deposition of air pollutants in Europe, Atmos. Chem. Phys., 16, 1895–1906, https://doi.org/10.5194/acp-16-1895-2016, 2016.
Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the air: A
review of the effects of particulate matter air pollution on human health,
J. Med. Toxicol., 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1,
2012.
Andersson, C., Bergström, R., and Johansson, C.: Population exposure and
mortality due to regional background PM in Europe – Long-term simulations of
source region and shipping contributions, Atmos. Environ., 43, 22–23,
https://doi.org/10.1016/j.atmosenv.2009.03.040, 2009.
Badeke, R.: Vertical ship emission profile parameterization, Zenodo [data set],
https://doi.org/10.5281/zenodo.5675747, 2021.
Badeke, R., Matthias, V., and Grawe, D.: Parameterizing the vertical downward dispersion of ship exhaust gas in the near field, Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, 2021.
Bai, S., Wen, Y., He, L., Liu, Y., Zhang, Y., Yu, Q., and Ma, W.: Single-vessel plume dispersion simulation: Method and a case study using CALPUFF in the Yantian port area, Shenzhen (China), Int. J. Env. Res. Pub. He., 17, 7821,
https://doi.org/10.3390/ijerph17217831, 2020.
Barnes, M. J., Brade, T. K., MacKenzie, A. R., Whyatt, J. D., Carruthers, D.
J., Stocker, J., Cai, X., and Hewitt, C. N.: Spatially-varying surface
roughness and ground-level air quality in an operational dispersion model,
Environ. Pollut., 185, 44–51, https://doi.org/10.1016/j.envpol.2013.09.039,
2014.
Basu, S. and Lacser, A.: A cautionary note on the use of Monin-Obukhov
similarity theory in very high-resolution Large-Eddy-Simulations,
Bound.-Lay. Meteorol., 163, 351–355,
https://doi.org/10.1007/s10546-016-0225-y, 2017.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and van der Gon, H. A.
C. D.: Vertical emission profiles for Europe based on plume rise
calculations, Environ. Pollut., 159, 2935–2946,
https://doi.org/10.1016/j.envpol.2011.04.030, 2011.
Bott, A.: A positive definite advection scheme obtained by nonlinear
renormalization of the advective fluxes, Mon. Weather Rev., 117, 1006–1016,
1989.
Bott, A.: Monotone flux limitation in the area-preserving flux-form
advection algorithm, Mon. Weather Rev., 120, 2592–2602, 1992.
Bott, A.: The monotone area-preserving flux-form advection algorithm:
Reducing the time-splitting error in two-dimensional flow fields, Mon.
Weather Rev., 121, 2638–2641, 1993.
Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L. M.: Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system, Atmos. Chem. Phys., 13, 7747–7764, https://doi.org/10.5194/acp-13-7747-2013, 2013.
Briggs, G. A.: Plume rise predictions, in: Lectures on air pollution and environmental impact analyses, American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-935704-23-2_3, 1982.
Broome, R. A., Cope, M. E., Goldsworthy, B., Goldsworthy, L., Emmerson, K.,
Jegasothy, E., and Morgan, G. G.: The mortality effect of ship-related fine
particulate matter in the Sydney greater metropolitan region of NSW,
Australia, Environ. Int., 87, 85–93,
https://doi.org/10.1016/j.envint.2015.11.012, 2016.
Brunner, D., Kuhlmann, G., Marshall, J., Clément, V., Fuhrer, O., Broquet, G., Löscher, A., and Meijer, Y.: Accounting for the vertical distribution of emissions in atmospheric CO2 simulations, Atmos. Chem. Phys., 19, 4541–4559, https://doi.org/10.5194/acp-19-4541-2019, 2019.
Byun, D. W., Young, J., Pleim, J., Odman, M. T., and Alapaty, K.: Numerical transport algorithms for the Community Multiscale Air Quality (CMAQ) chemical transport model in generalized coordinates, in: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, edited by: Byun, D. W. and Ching, J. K. S., National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, NC, Chap. 7, EPA/600/R-99/030, https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=30003R9Y.PDF (last access: 24 May 2022), 1999.
Chosson, F., Paoli, R., and Cuenot, B.: Ship plume dispersion rates in convective boundary layers for chemistry models, Atmos. Chem. Phys., 8, 4841–4853, https://doi.org/10.5194/acp-8-4841-2008, 2008.
Cohan, A., Wu, J., and Dabdub, D.: High-resolution pollutant transport in the
San Pedro Bay of California, Atmos. Pollut. Res., 2, 237–246,
https://doi.org/10.5094/APR.2011.030, 2011.
Contini, D. and Merico, E: Recent advances in studying air quality and health effects of shipping emissions, Atmosphere, 12, 92, https://doi.org/10.3390/atmos12010092, 2021.
Cooper, D. A.: Exhaust emissions from ships at berth, Atmos. Environ., 37,
3817–3830, https://doi.org/10.1016/S1352-2310(03)00446-1 , 2003.
Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V.,
and Lauer, A.: Mortality from ship emissions: A global assessment, Environ.
Sci. Technol., 41, 8512–8518, https://doi.org/10.1021/es071686z, 2007.
European Union: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. O . J. Eur. Union, 51, 1–44, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2008:152:FULL&from=EN (last access: 24 May 2022), 2008.
Eyring, V., Köhler, H. W., van Aardenne, J., and Lauer, A.: Emissions
from international shipping: 1. The last 50 years, J. Geophys. Res., 110, D17305,
https://doi.org/10.1029/2004JD005619, 2005.
Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J.,
Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., and Stevenson,
D. S.: Transport impacts on atmosphere and climate: Shipping, Atmos.
Environ., 44, 4735–4771, https://doi.org/10.1016/j.atmosenv.2009.04.059,
2010.
Fischereit, J.: Influence of urban water surfaces on human thermal
environments – an obstacle resolving modelling approach, PhD thesis,
University Hamburg, Germany, 383 pp., https://ediss.sub.uni-hamburg.de/handle/ediss/8005 (last access: 24 May 2022), 2018.
Fridell, E., Steen, E., and
Peterson, K.: Primary particles in ship emissions, Atmos. Environ., 42,
1160–1168, https://doi.org/10.1016/j.atmosenv.2007.10.042, 2008.
Grawe, D., Schlünzen, K. H., and Pascheke, F.: Comparison of results of
an obstacle resolving microscale model with wind tunnel data, Atmos.
Environ., 79, 495–509, https://doi.org/10.1016/j.atmosenv.2013.06.039,
2013.
Hamer, P. D., Walker, S.-E., Sousa-Santos, G., Vogt, M., Vo-Thanh, D., Lopez-Aparicio, S., Schneider, P., Ramacher, M. O. P., and Karl, M.: The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions, Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020, 2020.
Hanna, S. R., Schulman, L. L., Paine, R. J., Pleim, J. E., and Baer, M.:
Development and evaluation of the offshore and coastal dispersion model, J.
Air Pollut. Control Assoc., 35, 1039–1047,
https://doi.org/10.1080/00022470.1985.10466003, 1985.
Hanna, S. R., Egan, B. A., Purdum, J., and Wagler, J.: Evaluation of the
ADMS, AERMOD and ISC3 dispersion models with the OPTEX, Duke Forest,
Kincaid, Indianapolis and Lovett field datasets, Int. J. Environ. Pollut.,
16, 301–314, https://doi.org/10.1504/IJEP.2001.000626, 2001.
Holtslag A. A. M.: Estimates of diabatic wind speed profiles from
near-surface weather observations, Bound.-Lay. Meteorol., 29, 225–250,
1984.
Holtslag, A. A. M. and de Bruin, H. A. R.: Applied modeling of the
nighttime surface energy balance over land, J. Appl. Meteorol., 27,
689–704, 1988.
Hulskotte, J. H. J. and Denier van der Gon, H. A. C.: Fuel consumption and
associated emissions from seagoing ships at berth derived from an on-board
survey, Atmos. Environ., 44, 1229–1236,
https://doi.org/10.1016/j.atmosenv.2009.10.018, 2010.
Hunter, K. A., Liss, P. A., Surapipith, V., Dentener, F., Duce, R.,
Kanakidou, M., Kubilay, N., Mahowald, N., Okin, G., Sarin, M., Uematsu, M.,
and Zhu, T.: Impacts of anthropogenic SOx, NOx and NH3 on
acidification of coastal waters and shipping lanes, Geophys. Res. Lett., 38,
L13602, https://doi.org/10.1029/2011GL047720, 2011.
Hurley P.: TAPM v. 4, Part 1: Technical Description, CSIRO Marine and
Atmospheric Research Paper No. 25, Aspendale, Vic., Australia, ISBN
978-1-921424-71-7, https://www.cmar.csiro.au/research/tapm/docs/tapm_v4_technical_paper_part1.pdf (last access: 24 May 2022), 2008.
Hurley, P., Physick, W., and Luhar, A.: TAPM – a practical approach to
prognostic meteorological and air pollution modelling, Environ. Modell. Softw., 20, 737–752,
https://doi.org/10.1016/j.envsoft.2004.04.006, 2005.
Huszar, P., Cariolle, D., Paoli, R., Halenka, T., Belda, M., Schlager, H., Miksovsky, J., and Pisoft, P.: Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization, Atmos. Chem. Phys., 10, 6645–6660, https://doi.org/10.5194/acp-10-6645-2010, 2010.
Jahangiri, S., Nikolova, N., and Tenekedjiev, K.: Application of a developed
dispersion model to port of Brisbane, American J. Environ. Sci., 14,
156–169, https://doi.org/10.3844/ajessp.2018.156.169, 2018.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Janicke, U. and Janicke, L.: A three-dimensional plume rise model for dry
and wet plumes, Atmos. Environ., 35, 877–890,
https://doi.org/10.1016/S1352-2310(00)00372-1, 2001.
Jayaram, V., Nigam, A., Welch, W. A., Miller, J. W., and Cocker III, D. R.:
Effectiveness of emission control technologies for auxiliary engines on
ocean-going vessels, J. Air. Waste Manage., 61, 14–21,
https://doi.org/10.3155/1047-3289.61.1.14, 2011.
Johansson, L., Jalkanen, J. P., and Kukkonen, J.: Global assessment of
shipping emissions in 2015 on a high spatial and temporal resolution, Atmos.
Environ., 167, 403–415, https://doi.org/10.1016/j.atmosenv.2017.08.042,
2017.
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and Denier van der Gon, H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea, Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, 2015.
Karl, M. and Ramacher, M.: City-scale Chemistry Transport Model
EPISODE-CityChem (Release version 1.4), Zenodo [code],
https://doi.org/10.5281/zenodo.3862264, 2020.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region, Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019a.
Karl, M., Walker, S.-E., Solberg, S., and Ramacher, M. O. P.: The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg, Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019, 2019b.
Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M., Sofiev, M., Jalkanen, J.-P., Johansson, L., Quante, M., and Matthias, V.: Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, 2019c.
Karl, M., Pirjola, L., Karppinen, A., Jalkanen, J.-P., Ramacher, M. O. P.,
and Kukkonen, J.: Modeling of the concentrations of ultrafine particles in
the plumes of ships in the vicinity of major harbors, Int. J. Environ. Res.
Pu., 17, 777, https://doi.org/10.3390/ijerph17030777, 2020.
Kotrikla, A. M., Dimou, K., Korras-Carraca, M., and Biskos, G.: Air Quality
Modelling In The City Of Mytilene, Greece, in: Proceedings of the 13th
International Conference on Environmental Science and Technology, Athens,
Greece, 5–7 September 2013, https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/6682759 (last access: 24 May 2022), 2013.
Kotrikla, A. M., Lilas, T., and Nikitakos, N.: Abatement of air pollution at
an Aegean island port utilizing shore side electricity and renewable energy,
Mar. Policy, 75, 238–248, https://doi.org/10.1016/j.marpol.2016.01.026,
2017.
Ledoux, F., Roche, C., Cazier, F., Beaugard, C., and Courcot, D.: Influence
of ship emissions on NOx, SO2, O3 and PM concentrations in a
North-Sea harbor in France, J. Environ. Sci., 71, 56–66,
https://doi.org/10.1016/j.jes.2018.03.030, 2018.
Lee, J., Hong, J., Noh, Y., and Jiménez, P. A.: Implementation of a roughness sublayer parameterization in the Weather Research and Forecasting model (WRF version 3.7.1) and its evaluation for regional climate simulations, Geosci. Model Dev., 13, 521–536, https://doi.org/10.5194/gmd-13-521-2020, 2020.
Lin, H., Tao, J., Qian, Z., Ruan, Z., Xu, Y., Hang, J., Xu, X., Liu,
T., Guo, Y., Zeng, W., Xiao, J., Guo, L., Li, X., and Ma, W.: Shipping
pollution emission associated with increased cardiovascular mortality: A
time series study in Guangzhou, China, Environ. Pollut., 241, 862–868,
https://doi.org/10.1016/j.envpol.2018.06.027, 2018.
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., Shindell,
C., and He, K.: Health and climate impacts of oceangoing vessels in East
Asia, Nat. Clim. Change, 6, 1037–1041,
https://doi.org/10.1038/nclimate3083, 2016.
Martinelli, N., Olivieri, O., and Gierlli, D.: Air particulate matter and
cardiovascular disease: A narrative review, Eur. J. Intern Med., 24,
295–302, https://doi.org/10.1016/j.ejim.2013.04.001, 2013.
Matthias, V., Aulinger, A., Backes, A., Bieser, J., Geyer, B., Quante, M., and Zeretzke, M.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 2: Scenarios for 2030, Atmos. Chem. Phys., 16, 759–776, https://doi.org/10.5194/acp-16-759-2016, 2016.
Matthias, V., Arndt, J. A., Aulinger, A., Bieser, J., Denier van der Gon,
H., Kranenburg, R., Kuenen, J., Neumann, D., Pouliot, G., and Quante, M.:
Modeling emissions for three-dimensional atmospheric chemistry transport
models, J. Air Waste Manage., 68, 763–800,
https://doi.org/10.1080/10962247.2018.1424057, 2018.
McKinlay, C. J., Turnock, S. R., and Hudson, D. A.: A comparison of hydrogen
and ammonia for future long distance shipping fuels, in: Proceedings of the
LNG/LPG and Alternative Fuels Ships Conference, London, UK, 29–30 January
2020, https://eprints.soton.ac.uk/437555/ (last access: 24 May 2022), 2020.
Marine Environmental Protection Committee (MEPC): Report of the Marine Environment Protection Committee on its
fifty-eighth session, https://www.mpa.gov.sg/web/wcm/connect/www/0e3d48a6-97b3-4c6b-9dee-ea6f773897ad/mepc58-23-final-report.pdf?MOD=AJPERES
(last access: 2 November 2021), 2008.
Merico, E., Donateo, A., Gambaro, A., Cesari, D., Gregoris, E., Barbaro, E.,
Dinoi, A., Giovanelli, G., Masieri, S., and Contini, D.: Influence of
in-port ships emissions to gaseous atmospheric pollutants and to particulate
matter of different sizes in a Mediterranean harbour in Italy, Atmos.
Environ., 136, 1–10, https://doi.org/10.1016/j.atmosenv.2016.05.024,
2016.
Merico, E., Gambaro, A., Argiriou, A., Alebic-Juretic, A., Barbaro, E.,
Cesari, D., Chasapidis, L., Dimopolous, S., Dinoi, A., Donateo, A.,
Giannaros, C., Gregoris, E., Karagiannidis, A., Konstandopoulos, A. G.,
Ivošević, T., Liora, N., Melas, D., Mifka, B., Orlić, I.,
Poupkou, A., Sarovic, K., Tsakis, A., Giua, R., Pastore, T., Nocioni, A.,
and Contini, D.: Atmospheric impact of ship traffic in four Adriatic-Ionian
port-cities: Comparison and harmonization of different approaches, Transp.
Res. D.-Tr. E., 50, 431–445, https://doi.org/10.1016/j.trd.2016.11.016,
2017.
Merico, E., Dinoi, A., and Contini, D.: Development of an integrated
modelling-measurement system for near-real-time estimates of harbour
activity impact to atmospheric pollution in coastal cities, Transp. Res.
D.-Tr. E., 73, 108–119, https://doi.org/10.1016/j.trd.2019.06.009, 2019.
Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova,
V., Faccinetto, A., and Focsa, C.: Characterisation of particulate matter
and gaseous emissions from a large ship diesel engine, Atmos. Environ., 43,
2632–2641, https://doi.org/10.1016/j.atmosenv.2009.02.008, 2009.
Moré, J. J.: The Levenberg-Marquardt algorithm: Implementation
and theory, in: Numerical Analysis, edited by:
Watson, G. A., Springer, Heidelberg, 105–116, ISBN 3-540-08538-6, ISBN 0-387-08538-6, https://www.osti.gov/servlets/purl/7256021-WWC9hw/ (last access: 24 May 2022), 1977.
Moreno-Gutiérrez, J., Calderay, F., Saborido, N., Boile, M., Valero, R.
R., and Durán-Grados, V.: Methodologies for estimating shipping
emissions and energy consumption: A comparative analysis of current methods,
Energy, 86, 603–616, https://doi.org/10.1016/j.energy.2015.04.083, 2015.
Murena, F., Mocerino, L., Quaranta, F., and Toscano, D.: Impact on air
quality of cruise ship emissions in Naples, Italy, Atmos. Environ., 187,
70–83, https://doi.org/10.1016/j.atmosenv.2018.05.056, 2018.
Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G., Calderay-Cayetano, F., Durán-Grados, V., Moreno-Gutiérrez, J., Jalkanen, J.-P., Hannuniemi, H., and Sousa, S. I. V.: Shipping emissions in the Iberian Peninsula and the impacts on air quality, Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, 2020.
Pan, K., Lim, M. Q., Kraft, M., and Mastorakos, E.: Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3, Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021, 2021.
Poplawski, K., Setton, E., McEwen, B., Hrebenyk, D., Graham, M., and Keller,
P.: Impact of cruise ship emissions in Victoria, BC, Canada, Atmos.
Environ., 45, 824–833, https://doi.org/10.1016/j.atmosenv.2010.11.029,
2011.
Pozzer, A., Jöckel, P., and Van Aardenne, J.: The influence of the vertical distribution of emissions on tropospheric chemistry, Atmos. Chem. Phys., 9, 9417–9432, https://doi.org/10.5194/acp-9-9417-2009, 2009.
Ramacher, M. O. P., Karl, M., Bieser, J., Jalkanen, J.-P., and Johansson, L.: Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities – a generic approach, Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, 2019.
Ramacher, M. O. P., Matthias, V., Aulinger, A., Quante, M., Bieser, J., and
Karl, M.: Contributions of traffic and shipping emissions to city-scale
NOx and PM2.5 exposure in Hamburg, Atmos. Environ., 237, 117674,
https://doi.org/10.1016/j.atmosenv.2020.117674, 2020.
Rodriguez, E., Morris, C. S., and Belz, J. E.: A global assessment of the
SRTM performance, Photogramm. Eng. Rem. S., 72, 249–260,
https://doi.org/10.14358/PERS.72.3.249, 2006.
Salim, M. H., Schlünzen, K. H., Grawe, D., Boettcher, M., Gierisch, A. M. U., and Fock, B. H.: The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory, Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018, 2018.
Schlünzen, K. H., Hinneburg, D., Knoth, O., Lambrecht, M., Leitl, B.,
López, S., Lüpkes, C., Panskus, H., Renner, E., Schatzmann, M.,
Schoenemeyer, T., Trepte, S., and Wolke, R.: Flow and transport in the
obstacle layer: First results of the micro-scale model MITRAS, J. Atmos.
Chem., 44, 113–130, https://doi.org/10.1023/A:1022420130032, 2003.
Schlünzen, K. H., Boettcher, M., Fock, B. H., Gierisch, A., Grawe, D.,
and Salim, M.: Scientific documentation of the Multiscale Model System
M-SYS, MEMI Tech. Rep. 4, CEN, Univ. Hambg., 1–153, https://www.mi.uni-hamburg.de/en/arbeitsgruppen/memi/modelle/dokumentation/msys-scientific-documentation-20180706.pdf (last access: 24 May 2022), 2018.
Schwarzkopf, D. A., Petrik, R., Matthias, V., Quante, M., Majamäki, E.,
and Jalkanen, J.-P.: A ship emission modeling system with scenario
capabilities, Atm. Environ. X, 12, 100132,
https://doi.org/10.1016/j.aeaoa.2021.100132, 2021.
Simpson, D., Fagerli, H., Jonson, J. E., Tsyro, S., Wind, P., and Tuovinen,
J.-P.: Transboundary acidification, eutrophication and ground level ozone in
Europe, Part 1: Unified EMEP model description, EMEP Report 1/2003, 1–104,
ISSN: 0806-4520, https://www.emep.int/publ/reports/2003/emep_report_1_part1_2003.pdf (last access: 24 May 2022), 2003.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Smith, G. D.: Numerical solution of partial differential equations: finite
difference methods, 3rd edn., edited by: Buxton, J. N., Churchhouse, R. F., and Tayler, A. B., Clarendon Press, Oxford, UK, ISBN: 0-19-859641-3, https://wp.kntu.ac.ir/ghoreishif/smith.pdf (last access: 24 May 2022), 1985.
Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares,
J., Vira, J., Kouznetsov, R., Jalkanen, J. P., and Corbett, J. J.: Cleaner
fuels for ships provide public health benefits with climate tradeoffs, Nat.
Commun., 9, 406, https://doi.org/10.1038/s41467-017-02774-9, 2018.
Tzannatos, E.: Ship emissions and their externalities for Greece, Atmos.
Environ., 44, 2194–2202, https://doi.org/10.1016/j.atmosenv.2010.03.018,
2010.
United Nations Conference on Trade and Development (UNCTAD): Review of maritime transport 2019, United Nations, Geneva, https://unctad.org/en/Pages/Publications/Review-of-Maritime-Transport-(Series).aspx
(last access: 2 November 2021), 2020.
University of Hamburg: Mesoskalige und Mikroskalige Modellierung – MeMi, University of Hamburg [data set], https://www.mi.uni-hamburg.de/memi, last access: 21 May 2022.
US-EPA: User's guide for the AMS/EPA Regulatory Model – AERMOD,
USEPA-454/B-03-001, Research Triangle Park, NC, https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_userguide.pdf (last access: 24 May 2022), 2004.
Vinken, G. C. M., Boersma, K. F., Jacob, D. J., and Meijer, E. W.: Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model, Atmos. Chem. Phys., 11, 11707–11722, https://doi.org/10.5194/acp-11-11707-2011, 2011.
von Glasow, R., Lawrence, M. G., Sander, R., and Crutzen, P. J.: Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer, Atmos. Chem. Phys., 3, 233–250, https://doi.org/10.5194/acp-3-233-2003, 2003.
World Health Organization: WHO global air quality guidelines: particulate
matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide,
https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y
(last access: 25 March 2022), 2021.
Wieringa, J.: Updating the Davenport roughness classification, J. Wind Eng.
Ind. Aerod., 41, 357–368, 1992.
Winebrake, J. J., Corbett, J. J., Green, E. H., Lauer, A., and Eyring, V.:
Mitigating the health impacts of pollution from ocaeangoing shipping: An
assessment of low-sulfur fuel mandates, Environ. Sci. Technol., 43,
4776–4782, https://doi.org/10.1021/es803224q, 2009.
Zhang, Y., Feng, J., Liu, C., Zhao, J., Ma, W., Huang, C., An, J., Shen, Y.,
Fu, Q., Wang, S., Ding, D., Ge, W., Fung, F., Manokaran, K., Patton, A. P.,
Walker, K. D., and Kan, H.: Impacts of shipping on air pollutant emissions,
air quality, and health in the Yangtze river delta and Shanghai, China,
Special Report 22, Health Effect Institute,
Boston, Massachusetts, 1–78, https://www.healtheffects.org/system/files/zhang-sr22-report_0.pdf (last access: 24 May 2022), 2019.
Short summary
For air quality modeling studies, it is very important to distribute pollutants correctly into the model system. This has not yet been done for shipping pollution in great detail. We studied the effects of different vertical distributions of shipping pollutants on the urban air quality and derived advanced formulas for it. These formulas take weather conditions and ship-specific parameters like the exhaust gas temperature into account.
For air quality modeling studies, it is very important to distribute pollutants correctly into...