Articles | Volume 15, issue 9
Development and technical paper
13 May 2022
Development and technical paper |  | 13 May 2022

On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0

Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas

Related authors

Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211,,, 2023
Short summary
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: A box model trajectory study
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
EGUsphere,,, 2023
Short summary
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060,,, 2023
Short summary
Box model trajectory studies of contrail formation using a particle-based cloud microphysics scheme
Andreas Bier, Simon Unterstrasser, and Xavier Vancassel
Atmos. Chem. Phys., 22, 823–845,,, 2022
Short summary
New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91,,, 2022
Short summary

Related subject area

Numerical methods
Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets
Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu
Geosci. Model Dev., 17, 301–320,,, 2024
Short summary
Sweep interpolation: a cost-effective semi-Lagrangian scheme in the Global Environmental Multiscale model
Mohammad Mortezazadeh, Jean-François Cossette, Ashu Dastoor, Jean de Grandpré, Irena Ivanova, and Abdessamad Qaddouri
Geosci. Model Dev., 17, 335–346,,, 2024
Short summary
CHONK 1.0: landscape evolution framework: cellular automata meets graph theory
Boris Gailleton, Luca C. Malatesta, Guillaume Cordonnier, and Jean Braun
Geosci. Model Dev., 17, 71–90,,, 2024
Short summary
Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409,,, 2023
Short summary
Calibration of absorbing boundary layers for geoacoustic wave modeling in pseudo-spectral time-domain methods
Carlos Spa, Otilio Rojas, and Josep de la Puente
Geosci. Model Dev., 16, 7237–7252,,, 2023
Short summary

Cited articles

Abade, G., Grabowski, W. W., and Pawlowska, H.: Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Entraining Parcel Simulations, J. Atmos. Sci., 75, 3365–3379,, 2018. a
Arabas, S. and Pawlowska, H.: Adaptive method of lines for multi-component aerosol condensational growth and CCN activation, Geosci. Model Dev., 4, 15–31,, 2011. a
Arabas, S. and Shima, S.-I.: Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence, J. Atmos. Sci., 70, 2768–2777,, 2013. a
Arabas, S. and Shima, S.: On the CCN (de)activation nonlinearities, Nonlin. Processes Geophys., 24, 535–542,, 2017. a
Arabas, S., Pawlowska, H., and Grabowski, W.: Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO, Geophys. Res. Lett., 36, L11803,, 2009. a
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.