Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2619-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3
Marcela Silva
CORRESPONDING AUTHOR
Department of Civil Engineering, Monash University, Clayton, VIC, Australia
Ashley M. Matheny
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
Valentijn R. N. Pauwels
Department of Civil Engineering, Monash University, Clayton, VIC, Australia
Dimetre Triadis
Department of Mathematics and Statistics, La Trobe University, Bundoora, VIC, Australia
Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
Justine E. Missik
Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
Gil Bohrer
Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
Department of Civil Engineering, Monash University, Clayton, VIC, Australia
Related authors
No articles found.
Arash Aghakhani, David E. Robertson, and Valentijn R. N. Pauwels
EGUsphere, https://doi.org/10.5194/egusphere-2025-553, https://doi.org/10.5194/egusphere-2025-553, 2025
Short summary
Short summary
Australia's shifting climate, with recurring droughts and wet periods, makes streamflow prediction challenging. This study combines GR4J model with machine learning to improve daily streamflow forecasts in Western Victoria. By identifying key factors affecting river flow, it offers valuable insights for water management. The findings show that machine learning can reveal limitations in traditional models, leading to more accurate predictions in drought-prone regions.
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
Biogeosciences, 22, 1149–1162, https://doi.org/10.5194/bg-22-1149-2025, https://doi.org/10.5194/bg-22-1149-2025, 2025
Short summary
Short summary
Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study, we measured CO2 flux in an Australian temperate saltmarsh on French Island. The temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the saltmarsh absorbed 10.5 g CO2 m−2 on average daily from the atmosphere. Even in winter, when plants were dormant, it continued to be a CO2 sink, albeit a smaller one. Cool temperatures and high cloud cover inhibit carbon sequestration.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Cited articles
Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, J. Am. Stat. Assoc., 59, 1324–1325, https://doi.org/10.2307/2282672,
1964. a
Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration –
Guidelines for computing crop water requirements – FAO irrigation and
drainage paper 56, Rome, FAO, http://www.fao.org/docrep/x0490e/x0490e00.htm (last access: 27 March 2022), 1998. a
Amenu, G. G. and Kumar, P.: A model for hydraulic redistribution incorporating coupled soil-root moisture transport, Hydrol. Earth Syst. Sci., 12, 55–74, https://doi.org/10.5194/hess-12-55-2008, 2008. a, b, c
Bartlett, M. S., Vico, G., and Porporato, A.: Coupled carbon and water fluxes
in CAM photosynthesis: modeling quantification of water use efficiency and
productivity, Plant Soil, 383, 111–138, https://doi.org/10.1007/s11104-014-2064-2,
2014. a
Bohrer, G., Mourad, H., Laursen, T. A., Drewry, D., Avissar, R., Poggi, D.,
Oren, R., and Katul, G. G.: Finite element tree crown hydrodynamics model
(FETCH) using porous media flow within branching elements: A new
representation of tree hydrodynamics, Water Resour. Res., 41, W11404,
https://doi.org/10.1029/2005wr004181, 2005. a, b, c, d, e, f
Bohrer, G., Katul, G. G., Walko, R. L., and Avissar, R.: Exploring the Effects
of Microscale Structural Heterogeneity of Forest Canopies Using Large-Eddy
Simulations, Bound.-Lay. Meteorol., 132, 351–382,
https://doi.org/10.1007/s10546-009-9404-4, 2009. a
Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, 2018. a, b
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., and Harman,
I. N.: Moving beyond the incorrect but useful paradigm: reevaluating big-leaf
and multilayer plant canopies to model biosphere-atmosphere fluxes – a
review, Agr. Forest Meteorol., 306, 108435,
https://doi.org/10.1016/j.agrformet.2021.108435, 2021. a
Broadbridge, P., Daly, E., and Goard, J.: Exact Solutions of the Richards
Equation With Nonlinear Plant-Root Extraction, Water Resour. Res., 53,
9679–9691, https://doi.org/10.1002/2017wr021097, 2017. a
Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative
numerical solution for the unsaturated flow equation, Water Resour.
Res., 26, 1483–1496, https://doi.org/10.1029/wr026i007p01483, 1990. a, b
Chen, Y., Ryder, J., Bastrikov, V., McGrath, M. J., Naudts, K., Otto, J., Ottlé, C., Peylin, P., Polcher, J., Valade, A., Black, A., Elbers, J. A., Moors, E., Foken, T., van Gorsel, E., Haverd, V., Heinesch, B., Tiedemann, F., Knohl, A., Launiainen, S., Loustau, D., Ogée, J., Vessala, T., and Luyssaert, S.: Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme, Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, 2016. a
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R.,
Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L.,
Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M.,
Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J. S.,
Westoby, M., Wright, I. J., and Zanne, A. E.: Global convergence in the
vulnerability of forests to drought, Nature, 491, 752–755,
https://doi.org/10.1038/nature11688, 2012. a
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R.,
Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto,
S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir,
P.: Linking hydraulic traits to tropical forest function in a size-structured
and trait-driven model (TFS v.1-Hydro), Geoscientific Model Development, 9,
4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016. a
Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, 2012. a
Couvreur, V., Ledder, G., Manzoni, S., Way, D. A., Muller, E. B., and Russo,
S. E.: Water transport through tall trees: A vertically explicit, analytical
model of xylem hydraulic conductance in stems, Plant Cell Environ.,
41, 1821–1839, https://doi.org/10.1111/pce.13322, 2018. a
Cowan, I. R.: Transport of Water in the Soil-Plant-Atmosphere System, J. Appl. Ecol., 2, 221–239, https://doi.org/10.2307/2401706, 1965. a
Cruiziat, P., Cochard, H., and Améglio, T.: Hydraulic architecture of trees:
main concepts and results, Ann. Forest Sci., 59, 723–752,
https://doi.org/10.1051/forest:2002060, 2002. a
Daly, E., Porporato, A., and Rodriguez-Iturbe, I.: Coupled Dynamics of
Photosynthesis, Transpiration, and Soil Water Balance. Part II: Stochastic
Analysis and Ecohydrological Significance, J. Hydrometeorol., 5,
559–566, https://doi.org/10.1175/1525-7541(2004)005<0559:cdopta>2.0.co;2,
2004a. a, b
Daly, E., Porporato, A., and Rodriguez-Iturbe, I.: Coupled dynamics of
photosynthesis, transpiration, and soil water balance. Part I: Upscaling from
hourly to daily level, J. Hydrometeorol., 5, 546–558,
https://doi.org/10.1175/1525-7541(2004)005<0546:CDOPTA>2.0.CO;2, 2004b. a
de Jong van Lier, Q., van Dam, J. C., Metselaar, K., de Jong, R., and
Duijnisveld, W. H. M.: Macroscopic Root Water Uptake Distribution Using a
Matric Flux Potential Approach, Vadose Zone J., 7, 1065–1078,
https://doi.org/10.2136/vzj2007.0083, 2008. a
Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., and Sivapalan,
M.: Ecohydrological responses of dense canopies to environmental variability:
1. Interplay between vertical structure and photosynthetic pathway, J. Geophys. Res.-Biogeo., 115, G04022, https://doi.org/10.1029/2010JG001340,
2010. a, b
Fatichi, S., Pappas, C., and Ivanov, V. Y.: Modeling plant–water
interactions: an ecohydrological overview from the cell to the global scale,
WIREs Water, 3, 327–368, https://doi.org/10.1002/wat2.1125, 2016. a, b
Franks, P. J., Drake, P. L., and Froend, R. H.: Anisohydric but
isohydrodynamic: seasonally constant plant water potential gradient explained
by a stomatal control mechanism incorporating variable plant hydraulic
conductance, Plant Cell Environ., 30, 19–30,
https://doi.org/10.1111/j.1365-3040.2006.01600.x, 2007. a
Fruh, T. and Kurth, W.: The Hydraulic System of Trees: Theoretical Framework
and Numerical Simulation, J. Theor. Biol., 201, 251–270,
https://doi.org/10.1006/jtbi.1999.1028, 1999. a
Gardner, W. R.: Dynamic aspects of water availability to plants, Soil Sci.,
89, 63–73, https://doi.org/10.1097/00010694-196002000-00001, 1960. a
Hartzell, S., Bartlett, M. S., and Porporato, A.: The role of plant water
storage and hydraulic strategies in relation to soil moisture availability,
Plant Soil, 419, 503–521, https://doi.org/10.1007/s11104-017-3341-7, 2017. a
Hartzell, S., Bartlett, M. S., and Porporato, A.: Unified representation of the
C3, C4, and CAM photosynthetic pathways with the Photo3 model, Ecol.
Model., 384, 173–187, https://doi.org/10.1016/j.ecolmodel.2018.06.012, 2018. a
Herkelrath, W. N., Miller, E. E., and Gardner, W. R.: Water Uptake By Plants:
II. The Root Contact Model, Soil Sci. Soc. Am. J., 41,
1039–1043, https://doi.org/10.2136/sssaj1977.03615995004100060004x, 1977. a
Huang, C.-W., Domec, J.-C., Ward, E. J., Duman, T., Manoli, G., Parolari,
A. J., and Katul, G. G.: The effect of plant water storage on water fluxes
within the coupled soil-plant system, New Phytol., 213, 1093–1106,
https://doi.org/10.1111/nph.14273, 2017. a, b
Janott, M., Gayler, S., Gessler, A., Javaux, M., Klier, C., and Priesack, E.: A
one-dimensional model of water flow in soil-plant systems based on plant
architecture, Plant Soil, 341, 233–256, https://doi.org/10.1007/s11104-010-0639-0,
2011. a, b
Jarvis, N. J.: The interpretation of the variations in leaf water potential and
stomatal conductance found in canopies in the field, Philosophical
T. Roy. Soci. Lond. B, 273,
593–610, https://doi.org/10.1098/rstb.1976.0035, 1976. a
Jones, H. G.: Plants and Microclimate, Cambridge University Press,
https://doi.org/10.1017/cbo9780511845727, 2009. a
Katul, G. G., Oren, R., Manzoni, S., Higgins, C., and Parlange, M. B.:
Evapotranspiration: A process driving mass transport and energy exchange in
the soil-plant-atmosphere-climate system, Rev. Geophys., 50, RG3002,
https://doi.org/10.1029/2011rg000366, 2012. a
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., da Costa,
A. C. L., and Gentine, P.: Implementing Plant Hydraulics in the Community
Land Model, Version 5, J. Adv. Model. Earth Sy., 11,
485–513, https://doi.org/10.1029/2018ms001500, 2019. a
Kumagai, T.: Modeling water transportation and storage in sapwood – model
development and validation, Agr. Forest Meteorol., 109,
105–115, https://doi.org/10.1016/s0168-1923(01)00261-1, 2001. a
Lalic, B. and Mihailovic, D. T.: An Empirical Relation Describing Leaf-Area
Density inside the Forest for Environmental Modeling, J. Appl.
Meteorol., 43, 641–645,
https://doi.org/10.1175/1520-0450(2004)043<0641:aerdld>2.0.co;2, 2004. a
Li, L., Yang, Z., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M.,
Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.: Representation of
Plant Hydraulics in the Noah‐MP Land Surface Model: Model Development and
Multiscale Evaluation, J. Adv. Model. Earth Sy., 13, e2020MS002214,
https://doi.org/10.1029/2020ms002214, 2021. a
Manoli, G., Bonetti, S., Domec, J.-C., Putti, M., Katul, G., and Marani, M.:
Tree root systems competing for soil moisture in a 3D soil–plant model,
Adv. Water Resour., 66, 32–42,
https://doi.org/10.1016/j.advwatres.2014.01.006, 2014. a
Manzoni, S., Vico, G., Porporato, A., and Katul, G.: Biological constraints on
water transport in the soil–plant–atmosphere system, Adv. Water
Resour., 51, 292–304, https://doi.org/10.1016/j.advwatres.2012.03.016, 2013. a
Matheny, A. M., Mirfenderesgi, G., and Bohrer, G.: Trait-based representation
of hydrological functional properties of plants in weather and ecosystem
models, Plant Diversity, 39, 1–12, https://doi.org/10.1016/j.pld.2016.10.001, 2017. a, b
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft,
P. R.: Mechanistic scaling of ecosystem function and dynamics in space and
time: Ecosystem Demography model version 2, J. Geophys. Res.,
114, G01002, https://doi.org/10.1029/2008jg000812, 2009. a
Mencuccini, M., Manzoni, S., and Christoffersen, B.: Modelling water fluxes in
plants: from tissues to biosphere, New Phytol., 222, 1207–1222,
https://doi.org/10.1111/nph.15681, 2019. a
Mendel, M., Hergarten, S., and Neugebauer, H. J.: On a better understanding of
hydraulic lift: A numerical study, Water Resour. Res.h, 38, 1-1–1-10,
https://doi.org/10.1029/2001wr000911, 2002. a, b
Meunier, F., Rothfuss, Y., Bariac, T., Biron, P., Richard, P., Durand, J.-L.,
Couvreur, V., Vanderborght, J., and Javaux, M.: Measuring and Modeling
Hydraulic Lift of Lolium multiflorum Using Stable Water Isotopes, Vadose Zone
J. 17, 160134, https://doi.org/10.2136/vzj2016.12.0134, 2018. a
Mirfenderesgi, G., Bohrer, G., Matheny, A. M., Fatichi, S., de Moraes Frasson,
R. P., and Schäfer, K. V. R.: Tree level hydrodynamic approach for resolving
aboveground water storage and stomatal conductance and modeling the effects
of tree hydraulic strategy, J. Geophys. Res.-Biogeo.,
121, 1792–1813, https://doi.org/10.1002/2016jg003467, 2016. a, b, c, d
Mirfenderesgi, G., Matheny, A. M., and Bohrer, G.: Hydrodynamic trait
coordination and cost-benefit trade-offs throughout the isohydric-anisohydric
continuum in trees, Ecohydrology, 12, e2041, https://doi.org/10.1002/eco.2041, 2018. a, b, c
Nobel, P. S.: Chapter 9 – Plants and Fluxes, Academic Press, San
Diego, 438–505, https://doi.org/10.1016/B978-0-12-374143-1.00009-0, 2009. a
Polyanin, A. D.: Handbook of Linear Partial Differential Equations for
Engineers and Scientists, Chapman and Hall/CRC,
https://doi.org/10.1201/9781420035322, 2001. a
Quijano, J. C. and Kumar, P.: Numerical simulations of hydraulic redistribution
across climates: The role of the root hydraulic conductivities, Water
Resour. Res., 51, 8529–8550, https://doi.org/10.1002/2014wr016509, 2015. a, b, c, d
Shaw, R. H. and Schumann, U.: Large-eddy simulation of turbulent flow above and
within a forest, Bound.-Lay. Meteorol., 61, 47–64,
https://doi.org/10.1007/bf02033994, 1992. a
Silva, M.: mdef0001/FETCH3_casestudy_gmd: FETCH3_casestudy_gmd (v2.0.0-alpha), Zenodo [data set], https://doi.org/10.5281/zenodo.5775304, 2021. a
Silva, M. and Missik, J. E.: mdef0001/FETCH3_modular_NHL: FETCH3_modular_NHL (v2.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5775300, 2021. a
Somma, F., Hopmans, J. W., and Clausnitzer, V.: Transient three-dimensional
modeling of soil water and solute transport with simultaneous root growth,
root water and nutrient uptake, Plant Soil, 202, 281–293,
https://doi.org/10.1023/A:1004378602378, 1998. a
Sperry, J. S., Stiller, V., and Hacke, U. G.: Xylem Hydraulics and the
Soil–Plant–Atmosphere Continuum: Opportunities and Unresolved Issues,
Agronomy J., 95, 1362–1370, https://doi.org/10.2134/agronj2003.1362, 2003. a
Steudle, E.: The Cohesion-tension Mechanism and the Acquisition of Water by
Plant Roots, Annu. Rev. Plant Phys.,
52, 847–875, https://doi.org/10.1146/annurev.arplant.52.1.847, 2001. a
Teodosio, B., Pauwels, V. R. N., Loheide, S. P., and Daly, E.: Relationship
between root water uptake and soil respiration: A modeling perspective,
J. Geophys. Res.-Biogeo., 122, 1954–1968,
https://doi.org/10.1002/2017jg003831, 2017. a
Trugman, A. T., Fenton, N. J., Bergeron, Y., Xu, X., Welp, L. R., and Medvigy,
D.: Climate, soil organic layer, and nitrogen jointly drive forest
development after fire in the North American boreal zone, J. Adv.
Model. Earth Sy., 8, 1180–1209,
https://doi.org/10.1002/2015MS000576, 2016. a
van den Honert, T. H.: Water transport in plants as a catenary process,
Discuss. Faraday Soc., 3, 146, https://doi.org/10.1039/df9480300146, 1948. a
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J.,
44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity in
plant hydraulic traits explains seasonal and inter‐annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytol., 212,
80–95, https://doi.org/10.1111/nph.14009, 2016. a
Yunusa, I. A. M., Zolfaghar, S., Zeppel, M. J. B., Li, Z., Palmer, A. R., and
Eamus, D.: Fine Root Biomass and Its Relationship to Evapotranspiration in
Woody and Grassy Vegetation Covers for Ecological Restoration of Waste
Storage and Mining Landscapes, Ecosystems, 15, 113–127,
https://doi.org/10.1007/s10021-011-9496-9, 2012.
a
Zeppel, M., Macinnis-Ng, C., Palmer, A., Taylor, D., Whitley, R., Fuentes, S.,
Yunusa, I., Williams, M., and Eamus, D.: An analysis of the sensitivity of
sap flux to soil and plant variables assessed for an Australian woodland
using a soil – plant – atmosphere model, Funct. Plant Biol. 35, 509,
https://doi.org/10.1071/fp08114, 2008. a
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes...