Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1769-2022
https://doi.org/10.5194/gmd-15-1769-2022
Development and technical paper
 | 
02 Mar 2022
Development and technical paper |  | 02 Mar 2022

Implementation of aerosol data assimilation in WRFDA (v4.0.3) for WRF-Chem (v3.9.1) using the RACM/MADE-VBS scheme

Soyoung Ha

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gmd-2021-74', Anonymous Referee #1, 27 Jul 2021
  • RC2: 'Comment on gmd-2021-74', Anonymous Referee #2, 15 Sep 2021

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Soyoung Ha on behalf of the Authors (13 Oct 2021)  Author's response    Author's tracked changes    Manuscript
ED: Publish as is (18 Jan 2022) by David Topping
Download
Short summary
In an effort to improve air quality forecasting, the WRFDA 3D-Var system is newly extended for the assimilation of surface PM2.5 and PM10 using the RACM/MADE-VBS chemistry in the WRF-Chem model. Through a case study during the Korea–United States Air Quality (KORUS-AQ) period, it is demonstrated that the analysis can lead to improving the prediction of surface PM concentrations up to 26 % for 24 h, diminishing most bias errors.