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Abstract. The Weather Research and Forecasting model
data assimilation (WRFDA) system, initially designed for
meteorological data assimilation, is extended for aerosol
data assimilation for the WRF model coupled with chem-
istry (WRF-Chem). An interface between WRF-Chem and
WRFDA is built for the Regional Atmospheric Chemistry
Mechanism (RACM) chemistry and the Modal Aerosol Dy-
namics Model for Europe (MADE) coupled with the Volatil-
ity Basis Set (VBS) aerosol schemes. This article describes
the implementation of the new interface for assimilating
PM2.5 and PM10 as well as four gas species (SO2, NO2, O3,
and CO) on the ground. The effects of aerosol data assimi-
lation are briefly examined through a month-long case study
during the Korea–United States Air Quality (KORUS-AQ)
period. It is demonstrated that the improved chemical ini-
tial conditions through the 3D-Var analysis can lead to con-
sistent forecast improvements up to 26 %, reducing system-
atic bias errors in surface PM2.5 (PM10) concentrations to 0.0
(−1.9) µgm−3 over South Korea for 24 h.

1 Introduction

Regional air quality forecasting is mainly concerned with
air pollutants confined to the boundary layer (up to 1 km
from the ground), which is predominantly characterized by
near-surface concentrations of particulate matter (PM) with
particle diameters less than 2.5 and 10 µm (e.g., PM2.5 and
PM10, respectively). Many processes, such as the transport
and dispersion of chemical species, that directly affect sur-
face concentrations, strongly depend on weather conditions
(Baklanov et al., 2017). In particular, frequent haze events
with high PM concentrations over Korea are often associated

with long-range transport of pollutants, so the changes in lo-
cal emissions in the upstream areas can affect the chemical
composition and the PM concentrations in the region to a
great extent (Jo et al., 2020). Given the considerable effect
of meteorological simulations on the chemical processes and
the large uncertainty in the chemical transport models, chem-
ical (or aerosol) data assimilation in the numerical weather
prediction (NWP) system coupled with chemistry can make
encouraging contributions to short-range air quality forecast-
ing, with better representation of the atmospheric composi-
tion at the initial time.

The Weather Research and Forecasting model’s commu-
nity data assimilation system (WRFDA; Barker et al., 2012)
developed by the National Center for Atmospheric Research
(NCAR) was initially designed for meteorological data as-
similation to initialize the WRF model (Skamarock et al.,
2008) using a variational or a hybrid data assimilation tech-
nique. Since the NWP model was coupled with chemistry
and aerosol dynamics as an integrated forecasting system
(WRF-Chem; Grell et al., 2005), it has been widely used for
regional air quality forecasting, representing two-way real-
time interactions between meteorology and chemistry (Grell
and Baklanov, 2011), but WRFDA has remained for use in
weather data assimilation until very recently.

Unlike meteorological data assimilation, where most prog-
nostic variables (except hydrometeors) remain the same re-
gardless of the physics schemes in use, aerosol data assimi-
lation is tied to the chemistry parameterization employed in
the chemical transport model. That is because each chemical
option (for both gas and aerosol chemistry) defines an en-
tirely different set of chemical and aerosol prognostic vari-
ables. It implies that PM concentrations consist of different
aerosol species, depending on the chemical option used in the
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WRF-Chem model. Therefore, to assimilate PM measure-
ments, a new interface has to be developed in WRFDA for the
particular chemistry option (chem_opt), containing new ob-
servation operators (that compute the model correspondents
from the specific aerosol species), their tangent linear and
adjoint models as well as the background error covariance
estimation. In other words, even if the WRF-Chem model
supports numerous chemical parameterization options, they
cannot be used interchangeably in the WRFDA system be-
cause the analysis variables are tied to the aerosol species
defined in the chemistry scheme. In practice, users should
use the same chemical option between the forecast model
and the analysis system, meaning that the particular chemi-
cal option should be implemented in the assimilation system
in advance. That is why chemical or aerosol data assimila-
tion studies have used a minimal set of chemical options so
far and why it is challenging to use advanced chemistry in
aerosol data assimilation studies within the variational anal-
ysis framework.

Other challenges for chemical data assimilation are large
model uncertainties due to the complexity of chemical pro-
cesses, significant uncertainties in forcing parameters such
as emissions, highly nonlinear and non-Gaussian error dis-
tribution of chemical species, and expensive computations
ascribed to a long list of chemical species – typically with
dozens or hundreds of prognostic variables. The latter makes
the three-dimensional variational data assimilation (3D-Var)
algorithm still attractive, especially in the operational envi-
ronment, even with its limitations such as static background
error covariance and the use of the linearized forecast model
during the minimization procedure.

Because of the simplicity and the effective cost, the bulk
Goddard Chemistry Aerosol Radiation and Transport (GO-
CART; Chin et al., 2002) aerosol scheme has long been used
for aerosol data assimilation (Liu et al., 2011, Saide et al.,
2014, and Ha et al., 2020, just to name a few), although it is
well known to underestimate ground PM concentrations due
to the lack of secondary organic aerosol (SOA) formulation
(McKeen et al., 2009, Hallquist et al., 2009).

To use a more sophisticated chemistry option in aerosol
data assimilation, Sun et al. (2020) recently implemented
a new interface between WRF-Chem and WRFDA for the
Carbon Bond Mechanism version Z (CBMZ; Zaveri and Pe-
ters, 1999) gas chemistry and Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC; Zaveri et al., 2008)
aerosol schemes. They assimilated surface measurements us-
ing the 3D-Var technique and demonstrated systematic im-
provements of air quality forecasting over China up to 24 h.

This study extends the WRF-Chem/WRFDA 3D-Var sys-
tem for the Regional Atmospheric Chemistry Mechanism
(RACM; Stockwell et al., 1997) gas-phase chemistry, cou-
pled with the Modal Aerosol Dynamics Model for Europe
(MADE; Ackermann et al., 1998) and the secondary organic
aerosol (SOA) scheme based on a four-bin Volatility Basis
Set (VBS) (Ahmadov et al., 2012) in version 3.9.1 of the

WRF-Chem model. This chemical option is expected to pro-
vide a more realistic representation of organic carbon, nitrate,
and SOA that often resulted in the PM2.5 underestimation
over the East Asian region (Lee et al., 2020; Jo et al., 2020).

The main goal of the new system development is to facili-
tate aerosol data assimilation using the RACM/MADE-VBS
scheme (chem_opt= 108) in the WRF-Chem/WRFDA sys-
tem so that the initial conditions can lead to better air qual-
ity forecasting, especially in surface PM2.5 concentrations
over Korea. This study introduces the new system and ex-
amines how the assimilation of surface observations can af-
fect air quality forecasts through month-long cycling exper-
iments for May 2016, the Korea–United States Air Quality
(KORUS-AQ) campaign period. During early summertime,
air quality was measured in various platforms over the Ko-
rean Peninsula and its surroundings, and long-range transport
of air pollutants resulted in haze development over Korea for
25–31 May 2016. For the details of the case or the field cam-
paign, readers are referred to several other papers (Ha et al.,
2020, Peterson et al., 2019, and Miyazaki et al., 2019).

An overview of the new WRF-Chem/WRFDA system, in-
cluding new forward operators and background error statis-
tics, is presented in Sect. 2, followed by cycling experiments
and the forecast verification against independent observa-
tions described in Sect. 3. Finally, conclusions are made in
Sect. 4, followed by a discussion on the limitations of this
study and suggestions for future research.

2 The WRF-Chem analysis and forecasting system

The WRF-Chem model has many options for gas and aerosol
chemistry parameterizations that are fully coupled with me-
teorology, facilitating aerosol direct and indirect effects
through interactions with radiation, photolysis, and micro-
physical processes in real time (Fast et al., 2006). Within the
WRF infrastructure, it is coupled with the WRF preprocess-
ing system (WPS) and data assimilation (WRFDA), so it can
fully support the analysis and forecasting with the coupled
evolution of weather and chemistry. As the processes like ad-
vection and diffusion are applied for both chemical and mete-
orological variables, chemical species are transported based
on the model time step (which depends on the grid resolu-
tion).

Data assimilation pulls model trajectories toward the ob-
served information at the initial time, but when the model
integration starts from the initial state, the forecast model
tries to restore its own climatology based on the assumptions
and parameters defined in the system. Hence, to prevent the
model state from drifting away from the observed state, the
analysis (or data assimilation) should be conducted repeat-
edly, incorporating various observations into the model and
updating initial conditions at certain time intervals (e.g., ev-
ery 6 h). By conducting the analysis and the forecast con-
secutively (so-called “cycling”), initial conditions and subse-
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quent forecasts can be systematically improved in the long
term. For such a unified, synthetic cycling system, the anal-
ysis and the forecast systems communicate through an inter-
face that converts between observed variables, analysis (or
control) variables, and model prognostic variables.

By default, chemical boundaries are reset based on the ide-
alized profiles specified in the chemistry routines in WRF-
Chem. But if the chemical lateral boundary option (e.g.,
“have_bcs_chem”) is turned on to provide more realistic in-
flows of chemicals, wrfbdy files also need to be updated
for chemical species, typically using the output from global
chemical forecasts.

Unlike the cycling for weather forecasting, chemical sim-
ulations typically recycle chemical variables from the pre-
vious forecasts, which are provided through an auxiliary in-
put stream (e.g., wrf_chem_input) for the initialization (with
real.exe). At this time, WRF-Chem also needs several ad-
ditional input files for various emissions data because the
chemical transport model is strongly driven by the forcing
parameters throughout the model integration and heavily re-
lies on the quality of the emissions data produced for the
region. Once the initial conditions (e.g., wrfinput files) are
produced by the initialization, they are used as background
(e.g., a priori) for the analysis update at the cycle. (If data
assimilation is not carried out, the initial conditions are not
updated any further and directly used to initialize the model
simulation with the chemistry fields predicted from the pre-
vious cycle.) In the presented work, chemical observations
are assimilated along with in situ meteorological measure-
ments. But even if weather data are not assimilated, mete-
orological fields are updated through initial and boundary
conditions and the online interactions between aerosol and
radiation during the forecast step. Once the assimilation is
done, wrfbdy files are updated in the mother domain before
the model prediction starts in order to become consistent with
the analysis fields in the relaxation zone. But such boundary
updates are not applied to the chemical fields because chem-
ical or aerosol observations within five grids (51x) from the
boundary cells are not assimilated (e.g., no analysis updates
near the lateral boundaries).

2.1 The WRF-Chem configuration

The model simulations cover the East Asian region and the
Korean Peninsula with 27 and 9 km grid resolution, respec-
tively, in a one-way nesting mode, as shown in Fig. 1. Verti-
cally, 31 model levels are configured up to 50 hPa, with the
lowest level located around 173 m in domain 2. Such a coarse
vertical resolution may not resolve the observed spatial and
temporal variability of atmospheric aerosols, but the config-
uration is adopted from the current operational setting in the
National Institute of Environment Research (NIER) in South
Korea.

Static geographical fields such as land use, vegetation frac-
tion, albedo, soil temperature, and soil moisture are obtained

Figure 1. The surface observation network in two model domains.
A black box indicates domain 2 (D2) over South Korea, nested
down from domain 1 (D1). Colored dots indicate surface PM2.5
observations assimilated on 26 May 2016 at 00:00:00 UTC.

from the 20-class, 30 arcsec MODIS data through the geogrid
program of the WRF preprocessing system (WPS). The ini-
tial and lateral boundary conditions for meteorological vari-
ables are produced by global forecasts from the UK Met Of-
fice’s Unified Model (UM) operated by the Korean Meteo-
rological Administration (KMA) every 6 h. For meteorolog-
ical data assimilation, conventional observations in the Na-
tional Centers for Environmental Prediction (NCEP) prep-
bufr data (https://rda.ucar.edu/datasets/ds337.0/; last access:
4 March 2021) are employed.

This study focuses on the RACM gas chemistry
and the MADE-VBS aerosol parameterization (e.g.,
chem_opt= 108) in WRF version 3.9.1. The MADE-VBS
aerosol scheme defines a superposition of three log-normal
modes – Aitken, accumulation, and coarse modes – based on
the particle size distribution: an Aitken mode with a median
diameter of 0.01 µm, an accumulation mode ranging between
0.01 and 1 µm, and a coarse mode for particles typically
larger than 1 µm (with a median around 10 µm). All aerosol
particles are assumed to be spherical and internally mixed
(Aquila et al., 2011). The aerosol species treated are sulfate
(SO=4 ), nitrate (NO+3 ), ammonium (NH+4 ), elemental carbon
(EC), primary organic matter (POA), anthropogenic and
biogenic secondary organic aerosol (SOA), chloride (Cl),
sodium (Na), unspeciated PM2.5, unspeciated coarse fraction
of PM10 (antha), soil dust, and sea salt. The unspeciated
PM2.5 includes the fine fraction of sea salt and mineral dust
aerosols.

The dust and sea salt emissions are simulated fol-
lowing the GOCART mechanism (e.g., dust_opt= 13 and
seas_opt= 2). Photolysis rates of chemical species are com-
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Table 1. Summary of WRF-Chem physics configuration.

Physical processes Parameterization schemes

Aerosol chemistry RACM (Stockwell et al., 1997)
Gas-phase chemistry MADE-VBS (Ackermann et al., 1998)
Photolysis Madronich (Madronich, 1987)
Cloud microphysics Lin (Chen and Sun, 2002)
Cumulus Grell 3D ensemble (Grell and Dévényi, 2002)
Longwave radiation RRTMG (Iacono et al., 2008)
Shortwave radiation RRTMG (Iacono et al., 2008)
PBL YSU (Hong et al., 2006)
Surface layer Monin–Obukhov (Jimenez et al., 2012)
Land surface Noah (Chen and Dudhia, 2001)

puted in a simplified version of the National Center for
Atmospheric Research (NCAR) tropospheric ultraviolet–
visible (TUV) model (named the Madronich scheme)
(Madronich, 1987), and the Rapid Radiative Transfer
Model for GCMs (RRTMG) is used for both shortwave
(ra_sw_physics= 4) and longwave (ra_lw_physics= 4) ra-
diation (Iacono et al., 2008). The direct aerosol effect is ac-
counted for through interactions with atmospheric radiation
and photolysis. A list of physics and chemistry schemes used
in this study is summarized in Table 1.

Anthropogenic emission data are obtained from the KO-
RUS version 2 inventory, originally developed based on the
Comprehensive Regional Emissions for Atmospheric Trans-
port Experiment (CREATE-2015) emissions dataset and up-
dated for the KORUS-AQ campaign (Woo et al., 2012; Choi
et al., 2019). They were all emitted at the surface, i.e., with-
out any plume rise or specified vertical distribution. Note
that anthropogenic emission data should be produced for the
chemistry variables defined in the chemical option. Biogenic
emissions are built up online using the Model of Emission of
Gases and Aerosol from Nature (MEGAN; Version 2) (Guen-
ther et al., 2006), but biomass burning emissions are not used
in this study. All the WRF files including anthropogenic and
biogenic emissions are processed based on the MODIS land-
use datasets (Friedl et al., 2002).

For chemical lateral boundary conditions, 6-hourly global
outputs from the Community Atmosphere Model with
Chemistry (CAM-Chem) model, a component of the Com-
munity Earth System Model (CESM) version 2.1, were
used (Buchholz et al., 2019). These simulations were con-
figured at 0.9◦× 1.25◦ horizontal resolution and 56 ver-
tical levels up to 1.9 hPa using an updated tropospheric
chemistry mechanism (MOZART-T1; Emmons et al., 2020),
the Modal Aerosol Model with four modes (MAM4;
Liu et al., 2016), the anthropogenic and biomass burn-
ing emissions from the inventories specified for Climate
Model Intercomparison Project 6 (CMIP6), and meteorolog-
ical fields specified from Modern-Era Retrospective anal-
ysis for Research and Applications (MERRA)-2 reanal-
ysis (Molod et al., 2015). To make chemical boundary

conditions for domain 1, chemical species in CAM-Chem
are converted to the RACM gas species in WRF-Chem
through the “mozbc” utility (https://www2.acom.ucar.edu/
wrf-chem/wrf-chem-tools-community/, last access: 28 De-
cember 2020).

2.2 WRFDA for WRF-Chem

A new interface for the RACM/MADE-VBS scheme is de-
veloped based on version 4.0.3 of the WRFDA system to
assimilate PM2.5, PM10, SO2, NO2, O3, and CO measure-
ments on the ground. The variational data assimilation sys-
tem seeks an analysis solution as the best estimate of the
true state by minimizing deviations of model variables (x)
from the corresponding observations (y) based on the error
statistics of background forecasts and observations. The vari-
ational scheme assumes Gaussian and unbiased error distri-
butions, which can be characterized by covariances alone; its
solution is thus found a least-squares best fit using the covari-
ances. In practice, when the cost function J (x) is reached to
a minimum through an iterative minimization process, the re-
sulting state vector x becomes the analysis solution (Lorenc,
1986).

J (x)= J b
+ J o =

1
2
(x− xb)

TB−1(x− xb)

+
1
2
(y−H(x))TR−1(y−H(x)), (1)

where xb is the background state vector, which is usually
obtained from a deterministic forecast from the previous as-
similation cycle, and B and R represent background and ob-
servation error covariance matrices, respectively. An obser-
vation operator H(x) transforms the model states (x) to the
observed quantities (y) at observation locations and can be
nonlinear.

The WRFDA employs an incremental formulation
(Courtier et al., 1994) where the model state vector (x) is
replaced by increments δx(= x− xb) and the minimization
algorithm is constructed as a pair of nested loops. The full,
nonlinear model is used at each iteration of the outer loop,
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while its linearized version – tangent linear and adjoint mod-
els – is used in the inner loop to adjust the model trajectory
and minimize J iteratively. This approach can keep analysis
imbalance to a minimum, making the minimization proce-
dure more efficient. The final analysis xa (= xb+ δx) is then
used as the initial condition for the model simulation.

In most NWP models, the state vector (x) that contains
all the prognostic variables lies in the huge dimensional state
space (with typical degrees of freedom greater than O(107)),
which makes the computation of the inverse matrix (B−1)
prohibitive. As a practical way of solving J b, a control vec-
tor (v) that consists of analysis variables is defined as δx =
B1/2v. While forecast errors of model variables are typically
correlated through governing equations, control variables are
designed to have no cross correlations such that the error ma-
trix is diagonalized. With the control variable transformation,
the cost function is rewritten as below.

J (v)=
1
2
vTv+

1
2
(d −HB1/2v)TR−1(d −HB1/2v), (2)

where the innovation vector is defined as d = y−H(xb) and
H is a linearized version of H . The square root of the B ma-
trix (B= B1/2(B1/2)T) is decomposed into a series of sub-
matrices for the control variable transform so that the cost
function can avoid the inverse calculation of the large B ma-
trix.

B1/2
= UpSUvUh, (3)

where the Up matrix is called physical or balance transfor-
mation (via linear regression), S a diagonal matrix of fore-
cast error standard deviation, Uv the vertical transform, and
Uh the horizontal transform matrix.

In weather data assimilation, the control variable trans-
formation has been broadly practiced because meteorolog-
ical variables follow physical balance equations (such as
geostrophic or hydrostatic equations) at large scales (Bannis-
ter, 2008). But it is not straightforward to define multivariate
correlations between chemical species or between chemical
and meteorological variables due to their complex interac-
tions and chemical reactions that are highly nonlinear and
often transient. Therefore, chemical or aerosol species in the
model states (x) are directly used as control variables (v)
with univariate error covariances in chemical data assimila-
tion.

To compute the background error covariance matrix (B)
for atmospheric constituents defined in the RACM/MADE-
VBS scheme, the GEN_BE v2.0 (Descombes et al., 2015)
software is expanded for 39 three-dimensional chemical vari-
ables: aerosol sulfate (so4ai and so4aj), nitrate (no3ai and
no3aj), ammonium (nh4ai and nh4aj), chloride (clai and
claj), primary organic matter (orgpai and orgpaj), elemen-
tal carbon (eci and ecj), sodium (naai and naaj), unspeci-
ated PM2.5 (p25ai and p25aj), four-bin anthropogenic and
biogenic SOA (asoa1i, asoa1j, asoa2i, asoa2j, . . . , bsoa4i,

bsoa4j) with i and j at the end of each variable name in-
dicating Aitken and accumulation modes, respectively. Also
included are three coarse-mode variables – non-reactive an-
thropogenic aerosol (antha), marine aerosol concentration
(seas), and soil-derived aerosol particles such as dust (soila) –
and four gas species (SO2, NO2, O3, and CO).

The WRFDA provides various options for estimating the
background error covariance through “cv_option” in the
namelist. Here, cv_option= 7 is chosen for no balance trans-
formation in the regional simulations, meaning that the
chemical and aerosol species are control variables as full
fields and no cross correlations are considered between the
variables such that Up becomes an identity operator. The hor-
izontal transform matrix Uh is performed using recursive fil-
ters (Purser et al., 2003), while the vertical transform Uv is
carried out via an empirical orthogonal function (EOF) de-
composition of the vertical component of the background er-
ror covariance.

In the 3D-Var algorithm, the estimation of background er-
ror covariance is critical, especially in data-sparse regions.
As most surface stations are concentrated in urban areas, the
structure of background error covariance determines how to
spread out the observed information horizontally and verti-
cally. In aerosol data assimilation, it is of particular impor-
tance as the atmospheric constituents are adjusted according
to their background errors (e.g., B1/2 in δx = B1/2v).

In this study, chemical simulations are carried out in the
WRF-Chem model, starting at 00:00 UTC every day for one
month in May 2016, to compute background error covari-
ance statistics for chemical and aerosol species defined in the
RACM/MADE-VBS parameterization. Differences between
24 and 48 h forecasts at the same validation time are then
used as a proxy for forecast errors in each domain, and a
total of 29 sample forecasts for 3–31 May 2016 were used
to construct the B matrix using the National Meteorological
Center (NMC) method (Parrish and Derber, 1992), assuming
the same model bias and uncorrelated model errors. There
are five sequential stages (e.g., stage0–stage4) implemented
with different options in the GENBE software. In this study,
all the grid points are binned together for each model level,
with no latitudinal or longitudinal dependencies in the back-
ground error covariance.

Figure 2 displays the vertical profile of the background er-
ror standard deviation of each species over domain 2. During
the analysis procedure, the error is used to weigh the analysis
increment for a given variable, affecting how much the ob-
served information will change the model variable. Depend-
ing on the aerosol size distribution, Aitken-, accumulation-
, and coarse-mode variables are compared separately. Most
aerosol species in the accumulation mode have relatively
large background error standard deviations in the boundary
layer, and their counterparts in the Aitken mode show 1 or-
der magnitude smaller values, mostly with the maximum at
the surface. Among the species, large background errors are
found in sulfate, nitrate, ammonium, and unspecified PM2.5,
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Figure 2. Vertical profile of background error standard deviations for aerosol species in (a) accumulation, (b) Aitken, and (c) coarse modes,
and (d) gas species over domain 2.

contributing most to PM2.5 concentrations. In the coarse
mode, sea salt linearly reduces with height, indicating large
contributions (to PM10) at the sea level, but soila is charac-
terized by the high peak in the mid-troposphere, which might
be associated with the long-range transport of dust aerosols.
In the gas species, ozone (O3) represents large errors near the
top (e.g., low stratosphere), while carbon monoxide (CO) is
concentrated in the low troposphere. Due to the trivial val-
ues, the vertical error structures of SO2 and NO2 are hard to
see, but their standard deviations are also relatively large in
the boundary layer.

The vertical spread of the observed information at the sur-
face is determined by vertical error correlations, closely as-
sociated with the simulated boundary layer height. As the
static background error covariance cannot simulate the diur-
nal variability of the boundary layer, this becomes one of the
main limitations of the 3D-Var analysis for air quality appli-
cations. Figure 3 depicts the normalized vertical autocorre-
lations derived from the time-lagged forecasts for four ma-
jor aerosol species in accumulation and Aitken modes, three
coarse-mode aerosols, and four trace gases (from top to bot-
tom panels). Generally, correlation contours tend to spread
more in the lower levels, implying that the analysis updates
in the lowest level can affect the entire boundary layer. The

accumulation- and coarse-mode particles have a wider ver-
tical spread than the Aitken-mode particles with more lo-
calized effects. The round pattern around level 22 in most
species could be related to the advection with strong upper-
level jets. While all the trace gases have relatively large cor-
relations near the surface, ozone and nitrogen dioxide show
the largest correlations near the tropopause and stratosphere,
respectively.

To examine the horizontal propagation of the increments
from point observations, the horizontal correlation length
scales of the same species are illustrated in Fig. 4. In accu-
mulation and coarse modes (in the top and the third rows,
respectively), the overall vertical structure is similar, with
the linear increase down to the surface. The length scale at
the surface is specified around 36 km for so4aj, for example,
corresponding to four grids in the 9 km domain, meaning that
an observation at a point location can affect four surrounding
grid points radially. On the other hand, Aitken-mode aerosols
have short length scales near the surface, which tend to in-
crease in the upper levels, but their maximum values are
smaller than those of their counterparts in the accumulation
mode, representing more localized effects horizontally. Trace
gases show different vertical distributions with the maximum
near the top, except for ozone.
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Figure 3. Vertical autocorrelations in four major aerosol species in accumulation and Aitken modes (in the first and second rows, respec-
tively), three coarse-mode aerosols (in the third row), and four gas species (in the bottom row) over domain 2, contouring from 0.1 to 0.9
every 0.1 in different colors.

When the RACM/MADE-VBS option (e.g.,
chem_opt= 108) is chosen, the model equivalent of
the observed PM2.5 (XPM2.5 ) is computed as a total sum of
three-dimensional mass mixing ratios of 32 aerosol species
in accumulation (j ) and Aitken (i) modes predicted in the
WRF-Chem model, as below.

XPM2.5 = ρd

N∑
p=1

j∑
m=i

x
p
m, (4)

where ρd is dry density ([kgm−3]) for the unit conversion
from aerosol mixing ratios (µgkg−1) to mass concentrations

(µgm−3), and N = 16. To be consistent with the way the
MADE-VBS aerosol scheme estimates PM2.5 concentrations
in the model, the observation operator in WRFDA uses the
same equation as in Eq. (4), having individual species in dif-
ferent modes contributing to the PM concentrations equally.
If the observed atmospheric composition significantly differs
from the one in the model, or particular species change pre-
dominantly at certain times, this approach can lead to erro-
neous results (in both the analysis and forecast).

When PM10 is assimilated alone, the model correspon-
dent is computed by adding three coarse-mode variables –
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Figure 4. The horizontal length scales of the same species as in Fig. 3.

anthropogenic primary aerosol (antha), marine aerosol con-
centration (seas), and soil-derived aerosol particles such as
dust (soila) – into the simulated PM2.5. But in the concur-
rent assimilation of PM10 and PM2.5, the residuals from
PM10–PM2.5 are assimilated as a sum of three coarse-mode
aerosols, following Peng et al. (2018) and Sun et al. (2020).

Unlike the aerosol analysis that has to update dozens of
aerosol species (e.g., unobserved variables) from PM con-
centrations, the assimilation of trace gases is straightforward
because each gas species is the model prognostic variable in
most chemical options. Thus, the control variables are sim-
ply expanded for four gas species (SO2, NO2, O3, and CO),
and the observation operator becomes a simple horizontal in-

terpolation (e.g., bilinear interpolation) of the corresponding
variable at the lowest model level.

2.3 Observation processing and measurement errors

In this study, hourly surface observations of six major pol-
lutants (PM2.5, PM10, SO2, NO2, O3, and CO) are used
from 379 Korean sites operated by the NIER (http://www.
airkorea.or.kr, last access: 21 December 2020) and around
1600 sites from the China National Environmental Moni-
toring Center (CNEMC; http://www.cnemc.cn, last access:
21 December 2020) during the KORUS-AQ period. All the
gas species measured in Korean stations have the same
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Table 2. A list of new namelist parameters in WRFDA.

Namelist options Description

&wrfvar7 chem_cv_options= 108 racm_soa_vbs_kpp

&wrfvarchem use_chemic_surfobs= .true. chemical DA

&chem chemicda_opt= 1 1=PM2.5
2=PM10
3=PM2.5 and PM10
4= all (PM2.5, PM10, SO2, NO2, O3, CO)
5= gas only (SO2, NO2, O3, CO)

ppmv unit as in WRF-Chem, but all the Chinese sites re-
port the data in µg m−3, requiring a unit conversion as part
of observation processing. Using the molecular weight of
each gas species (wgas) and the molar volume of a gas
(Vm= 22.4 Lmol−1) at 1 standard temperature and pres-
sure (STP), the unit of the Chinese data is converted as
[ppmv]= [µgm−3]×Vm/wgas/1000.

As the surface stations are mostly concentrated in the large
cities, the hourly data that belong to the same 9 km model
grid are randomly split for assimilation and verification; each
dataset is then averaged over each grid. As a result, 279 Ko-
rean sites are averaged into 219 stations (or grids) for as-
similation, while the other 100 sites are averaged to 71 inde-
pendent observations for evaluation over South Korea. The
Chinese data have a lot of missing values, especially for the
period of heavy pollution events (24–26 May 2016), and be-
cause the verification is made over Korean sites only, they
are used without such processing.

Data quality control (QC) is done by setting maximum
thresholds of observation values and innovations ((o− f)’s)
during the assimilation procedure. Surface PM2.5 and PM10
observations are rejected when they are greater than 300,
500 µgm−3, respectively, or are different from their model
equivalent (e.g., H(xb)) by more than 100 µgm−3. Gas
species are also checked with the maximum threshold of 2,
2, 2, and 20 ppmv for the observed SO2, NO2, O3, and CO,
respectively. They are also rejected based on the threshold of
0.2 ppmv for the innovations.

Gas-phase pollutants on the ground are assimilated to-
gether, as opposed to individual species, using the cor-
responding model variables as their analysis (or control)
variables. Before assimilation, observations for all the gas
species are processed to have the same ppmv unit as the
model variables, as needed.

For the new assimilation capability, several new parame-
ters are added to namelist.input in WRF-Chem, as summa-
rized in Table 2. To demonstrate the capability of all the new
observation operators (that are independent of each other),
this study only presents the simultaneous assimilation of all
six pollutants using chemicda_opt= 4, as listed in Table 2.

In this 3D-Var analysis, observation errors are assumed
uncorrelated such that the observation error covariance ma-
trix R in Eq. (1) becomes diagonal with the observation error
standard deviations as diagonal elements. For the gas species,
the observation error is simply assigned as 10 % of the ob-
served value regardless of the location. For surface PM con-
centrations, the observation error is estimated as a sum of
the measurement error (εo) and the representative error (εr)
as εx =

√
εo2+ εr2, following Elbern et al. (2007). The mea-

surement error increases linearly with the observed value (xo)
as εo = 1.5+0.0075·xo, while the representative error is for-

mulated as εr = γ εo

√
1x
L

, where γ is set to be 0.5,1x is grid
spacing (here, 27 km for domain 1 and 9 km for domain 2),
and the scaling factor L is defined as 3 km, as in Ha et al.
(2020).

3 Results from cycling experiments

A month-long cycling experiment is conducted, assimilating
all the surface observations for six pollutants (PM2.5, PM10,
SO2, NO2, O3, and CO) (e.g., chemicda_opt= 4) in both do-
mains every 6 h. The baseline experiment (“NODA”) is first
conducted, recycling 6 h forecasts from the previous cycle.
The background error statistics are computed from the ex-
tended forecasts (e.g., up to 48 h) in NODA. Then, the DA ex-
periment assimilates all the observations to update the analy-
sis every 6 h based on the background error covariance, using
the same input data and the same lateral boundary conditions
for both meteorological and chemical fields as in NODA.

The UM global forecasts are initialized from the UM anal-
ysis at 18:00 UTC every day so that the UM global analy-
sis is used for 18:00 UTC cycles, while the following 6–18 h
UM forecasts are employed at 00:00–12:00 UTC cycles the
next day, respectively. The UM simulations run by KMA de-
fine surface fields at 1.5 m and the soil moisture content at
0–0.1, 0.1–0.35, 0.35–1.0, and 1–3 m soil layers in units of
[kgm−2 TS−1], where TS indicates the thickness of each soil
layer. To ungrib the data correctly, the Vtable and the ungrib
source codes in WPS are modified accordingly.

https://doi.org/10.5194/gmd-15-1769-2022 Geosci. Model Dev., 15, 1769–1788, 2022



1778 S. Ha: Aerosol data assimilation using the RACM/MADE-VBS scheme

Figure 5. Time series of hourly PM2.5 concentration on the ground.
The baseline experiment (“NODA”) is plotted in black, while the
DA experiment with the analysis every 6 h in red. Observations av-
eraged over all the evaluated stations in South Korea are marked as
blue dots, enclosed with the shaded area in light blue for the stan-
dard deviation in observations.

Figure 5 depicts the time series of hourly surface PM2.5
concentrations, averaged over 71 evaluation sites in South
Korea for the last week of May 2016 with heavy pollution
events. Observations are marked in blue dots, and the hourly
forecasts in DA and NODA are drawn in solid red and black
lines, respectively. The NODA experiment concatenates 0–
6 h forecasts every cycle, while DA presents the analysis for
every 6 and 1–5 h forecasts for other times. The 3D-Var anal-
ysis and the subsequent forecasts in DA follow the observa-
tions closely, but without data assimilation, 0–6 h forecasts in
NODA largely deviate from the measurements, even beyond
the observation uncertainty across stations (shaded in light
blue).

Figures 6 and 7 illustrate observation minus background
(omb; dotted gray line) and observation minus analysis (oma;
solid black line) in DA, as a time series of surface PM
concentrations and gas species, respectively, for the entire
month. The total number of observations (blue dots in Fig. 6)
varies from cycle to cycle, but the time series of omb and
oma indicates that the analysis system gets spun up quickly
(with the steady trend of oma) and runs reliably throughout
the month-long period with the analyses closer to observa-
tions than background forecasts for all six pollutants. The
number of observations in trace gases is omitted in Fig. 7 be-
cause it is very similar to that of PM observations, and the
omb in gas species is greatly fluctuating with cycles. Such
large oscillations of omb and large differences between anal-
ysis and background are often attributable to the consider-
able errors in the forecast model and/or forcing parameters,
which prompt the model state to return to its own equilib-
rium quickly (e.g., within 6 h). For the rest of the figures, the
evaluation is made only for 7–31 May 2016, discarding the
first week of cycling as a spin-up period.

The MADE-VBS aerosol parameterization has been re-
ported to simulate the chemical composition over the East
Asian region reasonably well (Lee et al., 2020; Saide et al.,
2020). As shown in Fig. 8a, the surface PM2.5 analysis
is dominated by nitrates (NO3), sulfate (SO4), ammonium
(NH4), unspeciated PM2.5, and anthropogenic secondary or-
ganic aerosols (ASOA) in Seoul, South Korea (in that or-
der), consistent with the background error estimates shown
in Fig. 2. Compared to the analysis averaged over the whole
evaluation period, the analysis in the heavy pollution event
on 26 May 2016 (Fig. 8b) indicates that major constituents’
contributions further increase, particularly by nitrate. Due to
the limited information content of atmospheric composition
measurements as well as the scarcity of such observations, it
is hard to evaluate the fractional aerosol contribution by all
the species defined in the MADE-VBS scheme. Hence, these
figures are presented only to show the aerosol composition
represented by the analysis using the aerosol chemistry and
how it changes when surface PM2.5 concentrations are high
due to long-range transport of air pollutants. In the WRFDA
system, several tuning parameters (such as var_scaling and
len_scaling) are supported for further adjustments of each
aerosol species, as needed. Using the default setting (e.g.,
without tuning), the fractional contribution is not substan-
tially changed by assimilation in this particular case study.
The overall composition with major constituents seems con-
sistent with those from previous studies (Jo et al., 2020; Tian
et al., 2019).

Figure 9 presents the horizontal distribution of analysis
increments (equal to the difference between the analysis
and the background) in the assimilated variables at the low-
est model level, averaged for the evaluation period. Surface
PM2.5 concentrations are reduced by assimilation, especially
over central eastern China (along 30◦ N), indicating that they
were mostly overpredicted in background forecasts, likely
due to the systematic overestimation of anthropogenic emis-
sion data. Given that air pollutants in the emission data con-
stitute the majority of the precursors of PM2.5 pollution, sur-
face PM2.5 concentrations could strongly depend on emis-
sions, which might have led to the overestimation in the
background forecasts (Chen et al., 2019). Therefore, the as-
similation of surface PM2.5 tends to counteract the overes-
timation driven by the emission data over China. On the
contrary, PM10 concentrations are predominantly enhanced
by assimilation over most areas, presumably because coarse-
mode aerosols might not be sufficiently described in both the
emission data (through “E_PM_10”) and the model estimate.
Among the coarse-mode species, dust aerosols (soila) show
the most significant analysis increments over the Jing–Jin–
Ji (an abbreviation of the Chinese names of Beijing, Tianjin,
and Hebei) metropolitan region (not shown). On the other
hand, the analysis does not make meaningful changes in SO2
and NO2 but tends to decrease ozone and increase carbon
monoxide over South Korea.
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Figure 6. Time series of observation minus background (omb; dotted gray line) and observation minus analysis (oma; solid black line) in
surface PM2.5 (a) and PM10 (b) in the “DA” experiment, in terms of root-mean-square error over all the stations assimilated in domain 1 at
each cycle. The averages over cycles are shown in the legend, and the total number of stations at each cycle is marked in blue dots with the
y axis on the right.

Figure 10 examines how the vertical distribution of aerosol
species systematically changes with the assimilation over do-
main 2. Even if only the surface observations were assimi-
lated, the entire boundary layer is affected by continuous cy-
cling, based on the aerosol forecast error structure. The DA
experiment mainly reduces most aerosol species contribut-
ing to PM2.5 in the boundary layer. But soil-derived dust and
sea salt aerosols are significantly increased in the low tro-
posphere, due to their large standard deviations and eigen-
values estimated in the background error covariance. These
coarse-mode variables could be also affected by weather con-
ditions to a greater extent as they could be more sensitive to
the large-scale advection like low-level jets. The role of me-
teorological fields or their interactions with aerosols will be
examined in the context of concurrent data assimilation of
chemical and meteorological observations in the following
study.

The reduction of PM2.5 and the large increase of PM10 in
the boundary layer, as shown in Fig. 11, are consistent with
previous results. PM2.5 shows that the analysis (orange) and
the following 6 h forecast (red) are not much different in the
climatological sense (e.g., mean over time and space). But

PM10 displays relatively large discrepancies between the two
and even bigger differences between NODA and DA, mainly
due to the large changes in soila, as shown in the previous
figure. Systematic disparities between observations and the
model estimates typically imply the deficiencies in the model
simulation and/or the forcing parameters. As the focus of this
study is the prediction of surface PM2.5 concentrations, no
further investigation is made on the systematic errors in PM10
simulations in this study. But generally, the larger the model
error gets, the harder it is to make an optimal solution in the
analysis. On the other hand, SO2 and NO2 near the surface
are slightly increased by assimilation over domain 2, which
does not last for 6 h because of their short lifetime. While
the changes in the vertical structure of those two fields are
confined to the boundary layer, ozone and carbon monoxide
experience the adjustments for the entire profile through the
cycling.

Figure 12 illustrates the time series of rms and bias errors
of 0–48 h forecasts with respect to independent PM2.5 obser-
vations at the surface. The large initial errors in NODA imply
that aerosol species are not properly initialized without as-
similation, even if they are recycled every 6 h for the whole
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Figure 7. Same as Fig. 6 but for gas species.

month. With data assimilation, initial conditions in the DA
experiment are substantially improved over both domains,
leading to smaller forecast errors throughout 48 h forecasts.
In domain 1, a large overestimation in NODA is significantly
reduced by assimilation, but the positive bias remains for
48 h. In domain 2, the systematic bias is mostly corrected
in DA up to 36 h forecasts, and the RMSEs are consistently
small compared to NODA. The forecast errors are mostly
distinguishable for the first 24 h, and the analysis impact typi-
cally lasts no longer than 6 h in trace gases like NO2 and SO2,
24 h forecast mean errors are thus summarized in Table 3 for
all six pollutants. Compared to the baseline run (NODA), the
DA experiment systematically improves surface PM2.5 fore-
casts in both domains, with the RMSEs decreased by 26 %
and 20 % over domains 1 and 2, respectively. The RMSEs of
PM10 are reduced only by ∼ 14 % in DA, but the systematic
underestimation gets mostly diminished over both domains.
The assimilation is not very effective in the prediction of gas

species except for carbon monoxide, partly due to the model
errors and partly due to the observation errors that might need
to be further adjusted for better results.

The forecast errors depicted in Fig. 12 are dominated
by moderate (or clear-sky) cases in Korea, but air qual-
ity forecasting becomes more crucial for heavy pollution
events, making the categorical forecast verification impor-
tant in a practical sense. Table 4 categorizes four different
events based on hourly surface concentrations in six pollu-
tants, and Table 5 defines categorical forecasts for different
air pollution events. Figure 13 highlights the forecast accu-
racy for categorized events, verified against independent ob-
servations, based on the formulae described below.

Overall_Accuracy (%)=
a1+ b2+ c3+ d4

N
× 100 (5)

High_Pollution_Accuracy (%)=
c3+ d4
III+ IV

× 100 (6)
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Figure 8. (a) Pie chart showing the percentage contribution by aerosol species in Seoul, South Korea, in the analysis averaged over 97 cycles
from 00:00 UTC on 7 May to 00:00 UTC on 31 May 2016 and (b) deviations from the mean analysis in the analysis at 00:00 UTC on 26 May
2016 over domain 2 in the DA experiment. Surface PM2.5 consists of aerosol sulfate (SO4; so4ai and so4aj), ammonium (NH4; nh4ai and
nh4aj), nitrate (NO3; no3ai and no3aj), primary organic matter (POA; orgpai and orgpaj), elemental carbon (EC; eci and ecj), unspeciated
PM2.5 (P25; p25ai and p25aj), sodium chloride (NaCl; naai, naaj, clai, and claj), and four-bin anthropogenic and biogenic secondary organic
aerosol (ASOA and BSOA, respectively) at the lowest model level.

Table 3. The RMSE and bias errors of 24 h forecasts in NODA and
DA experiments.

RMSE Bias

D1 D2 D1 D2

PM2.5 NODA 42.8 21.3 15.4 2.5
DA 31.6 17.0 8.4 0.0

PM10 NODA 53.4 33.0 −9.6 −13.9
DA 46.1 28.2 −0.7 −1.9

SO2 NODA 0.016 0.006 0.007 0.001
DA 0.015 0.006 0.007 0.001

NO2 NODA 0.018 0.001 0.017 −0.001
DA 0.017 0.000 0.017 −0.003

O3 NODA 0.023 0.007 0.02 0.006
DA 0.022 −0.006 0.02 −0.004

CO NODA 0.662 −0.209 0.277 −0.228
DA 0.642 −0.182 0.249 −0.184

False_Alarm (%)=
II

II+ IV
× 100, (7)

where I= a1+a2+b1+b2, II= c1+c2+d1+d2, III= a3+
a4+b3+b4, IV= c3+c4+d3+d4, andN = I+II+III+IV.
The air quality forecasting operated by the NIER in South
Korea is currently evaluated in the same way daily, except for
daily mean values (rather than hourly averages). The forecast
accuracy rates defined here can be considered as skill scores
for categorized events so that the higher they are, the better
they become. First of all, NODA shows very stable accuracy
rates between 40 % and 50 % for all events. As forecast er-

rors usually grow with time due to the model uncertainty, this
means that the forcing parameters consistently constrain the
chemical forecasting. With data assimilation (red), the ini-
tial accuracy gets doubled up in both domains (up to 80 %),
even for high-pollution cases. But the benefit of the anal-
ysis quickly disappears with time, implying the challenges
with chemical data assimilation using the 3D-Var technique
and large uncertainties in aerosol simulations. Note that the
DA algorithm used here cannot produce an optimal solu-
tion when there are significant errors in the model and/or the
forcing parameters as the strong-constraint variational sys-
tem assumes a perfect model in the optimization. As Boc-
quet et al. (2015) pointed out, even with the improved anal-
ysis, it is hard to compete with forcing parameters such as
emissions by which the chemical transport model is strongly
driven, making the chemical analysis impact typically lim-
ited to the first-day forecasts. The results shown here are
consistent with previous studies, illustrating that most of the
benefits from data assimilation are limited to the first 24 h
forecasts, although the overall forecast accuracy in DA still
remains higher than NODA up to 48 h. In domain 2, due to
the small sample size, the forecast accuracy for high con-
centrations is not as consistent (and smooth) as in domain 1,
and the results may not be statistically significant. But the
false alarm rates for all events are also reduced for 0–24 h
forecasts, indicating that the assimilation systematically im-
proves the 9 km simulations (in D2).

4 Conclusions and discussion

This study introduced a new extended version of the WRFDA
3D-Var analysis system for the RACM chemistry and the
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Figure 9. Horizontal distribution of the analysis increments in particulate matter concentrations and four gas species at the lowest model
level over domain 1 in the DA experiment, averaged for 7–31 May 2016. The domain average is shown in the top right corner of each panel.

Table 4. Air quality index values, as defined in the NIER in Korea.

Concentration (hourly) Good Moderate Unhealthy Very unhealthy

PM2.5 [µgm−3] 15 35 75 > 75
PM10 [µgm−3] 30 80 150 > 150
SO2 [ppmv] 0.02 0.05 0.15 > 0.15
NO2 [ppmv] 0.03 0.06 0.20 > 0.20
O3 [ppmv] 0.03 0.09 0.15 > 0.15
CO [ppmv] 2 9 15 > 15
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Figure 10. Vertical profile of aerosol species ([µgkg−1]) averaged over domain 2. The 6 h forecasts in NODA (black) and DA (red) are
depicted with solid lines, while the analyses in DA are indicated by the dotted orange line.

Table 5. Categorical forecasts for different air pollution events.

Category Forecast

Good Moderate Unhealthy Very unhealthy

Observation Good a1 b1 c1 d1
Moderate a2 b2 c2 d2
Unhealthy a3 b3 c3 d3
Very unhealthy a4 b4 c4 d4
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Figure 11. Same as Fig. 10 but for six pollutants assimilated in DA.

MADE-VBS aerosol parameterization (chem_opt= 108) in
the WRF-Chem forecast model. It is demonstrated that the
new analysis capability is successfully implemented for sur-
face observations for six pollutants (PM2.5, PM10, SO2, NO2,
O3, and CO) through the cycling experiments over the East
Asian region for May 2016.

As specified in the background error covariance estima-
tion, the assimilation of the ground measurements affects the
entire boundary layer and the surrounding area (up to four
grid points from the observation sites in domain 2). In the as-
similation of surface PM concentrations, each aerosol species
is adjusted according to its background errors, contributing to
the atmospheric composition differently. Inorganic aerosols
in the accumulation mode (no3aj, so4aj, and nh4aj), the ma-
jor constituents of PM2.5 in the RACM/MADE-VBS scheme,
are adjusted more than the Aitken-mode aerosols, spread-
ing more widely in both horizontal and vertical. Dust and
sea salt aerosols in the coarse mode significantly increase in
the boundary layer, leading to a substantial increase in PM10
concentrations on the ground over East Asia. In the assimila-
tion of trace gases, carbon monoxide is mainly increased near
the surface, while the surface ozone slightly decreases over

Figure 12. Time series of (a, b) root-mean-square error (RMSE)
and (c, d) bias as (forecast minus observation) in surface PM2.5 con-
centration of the hourly forecasts from the analysis at 00:00 UTC
from 7 to 31 May 2016. The left panels (a, c) show the errors of
forecasts at 27 km resolution verified against 1188 stations over do-
main 1, and the right panels (b, d) present the 9 km forecast errors
with respect to surface PM2.5 observations from 71 independent
stations in Korea.

the Korean Peninsula. The analysis does not make meaning-
ful changes in SO2 and NO2 because of their short lifetime.

The month-long cycling experiments confirmed that the
aerosol assimilation could improve air quality forecasts for
24 h, verified against independent observations. The im-
provements were evident even in the heavy pollution events
(24–26 May 2016) over South Korea, suggesting that the
new system can be useful for predicting exceedance and
non-exceedance events. Given the lack of interoperability be-
tween chemical parameterization schemes, these results val-
idate that the MADE/VBS aerosol scheme can improve air
quality forecasting in the context of chemical weather cy-
cling, especially over the East Asian region. The new codes
developed here will be included in the next release of the
WRFDA system.

Even with the successful demonstration of the new imple-
mentation, however, the 3D-Var analysis system can be fur-
ther improved or examined to maximize the impact of chem-
ical observations. In an effort to optimize the system design,
conventional weather data were assimilated at the same time,
and chemical boundary conditions were updated every 6 h.
Many processes and inputs (e.g., emissions) depend on me-
teorological conditions, and the large-scale chemical forcing
can affect the quality of background forecasts, but their roles
on aerosol prediction were not examined, focusing on the
demonstration of the new development. Large uncertainties
in the forecast model and the emission data were also not ex-
amined, as well as the observation errors that may need to be
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Figure 13. Same as Fig. 12 but for the forecast accuracy (%) for categorized events, as defined in Tables 4 and 5. The 48 h mean forecast
accuracy of each experiment is shown in the legend.

tuned, especially for trace gases. Those important aspects are
left behind for future studies. A more appropriate choice of
control variables, for example, can enhance the conditioning
of the 3D-Var problem (Courtier and Talagrand, 1990). The
observation operator used in this study treated each aerosol
species in each mode as an individual control variable, but
because the Aitken-mode variables contributed to the partic-
ulate matter concentrations only for about 10 %, it might be
worth trying to reduce the total number of control variables
by either using major constituents or combining Aitken and
accumulation modes for each species.

The error cross correlations between meteorological vari-
ables and chemical species or between chemical species
could not be specified in the current variational data assim-
ilation framework but might also play a significant role in
improving air quality forecasting, particularly for long-range
transport of air pollutants that often cause heavy pollution
events over Korea. For a dynamical estimation of such cross
correlations, ensemble-based methods should be introduced
(Bocquet et al., 2015; Miyazaki et al., 2020; Sandu and Chai,
2011).

Code and data availability. The WRF-Chem v3.9.1 codes
are freely available from https://www2.mmm.ucar.edu/wrf/
users/download/get_source.html (NCAR, 2021). The WRFDA
source codes developed for this study and the WPS codes
modified for the UM grib data can be downloaded from
https://doi.org/10.5281/zenodo.4594671 (Ha, 2021). Real-time air
quality observations are available at http://www.airkorea.or.kr/
(Air Korea, 2020) for Korean sites and at http://www.cnemc.cn
(China National Environmental Monitoring Centre, 2020) for
Chinese stations. The NCEP prepbufr data are archived and
available at the National Center for Atmospheric Reserach
(https://doi.org/10.5065/Z83F-N512, National Centers for Envi-
ronmental Prediction et al., 2008). CAM-Chem model outputs
for lateral boundary condition files can be downloaded from
https://www.acom.ucar.edu/cam-chem/cam-chem.shtml (last ac-
cess: 28 December 2020, Buchholz et al., 2019). The WRF-Chem
preprocessor tools such as mozbc and megan_bio_emiss are
available at https://www.acom.ucar.edu/wrf-chem/download.shtml
(ACOM/NCAR, 2020).
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