Articles | Volume 15, issue 4
Geosci. Model Dev., 15, 1713–1734, 2022
https://doi.org/10.5194/gmd-15-1713-2022
Geosci. Model Dev., 15, 1713–1734, 2022
https://doi.org/10.5194/gmd-15-1713-2022
Development and technical paper
28 Feb 2022
Development and technical paper | 28 Feb 2022

Representing low-intensity fire sensible heat output in a mesoscale atmospheric model with a canopy submodel: a case study with ARPS-CANOPY (version 5.2.12)

Michael T. Kiefer et al.

Related authors

TUNER-compliant error estimation for MIPAS: methodology
Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Bernd Funke, Michael Kiefer, Anne Kleinert, Gabriele P. Stiller, Andrea Linden, and Sylvia Kellmann
Atmos. Meas. Tech., 15, 6991–7018, https://doi.org/10.5194/amt-15-6991-2022,https://doi.org/10.5194/amt-15-6991-2022, 2022
Short summary
Updated merged SAGE - CCI- OMPS+ dataset for evaluation of ozone trends in the stratosphere
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-313,https://doi.org/10.5194/amt-2022-313, 2022
Preprint under review for AMT
Short summary
MIPAS IMK/IAA version 8 retrieval of nitric oxide and lower thermospheric temperature
Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Manuel López-Puertas, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-260,https://doi.org/10.5194/amt-2022-260, 2022
Preprint under review for AMT
Short summary
Version 8 IMK/IAA MIPAS ozone profiles: nominal observation mode
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya Garcia-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel Lopez-Puertas, and Gabriele Stiller
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-257,https://doi.org/10.5194/amt-2022-257, 2022
Preprint under review for AMT
Short summary
The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022,https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range
Daan R. Scheepens, Irene Schicker, Kateřina Hlaváčková-Schindler, and Claudia Plant
Geosci. Model Dev., 16, 251–270, https://doi.org/10.5194/gmd-16-251-2023,https://doi.org/10.5194/gmd-16-251-2023, 2023
Short summary
ICLASS 1.1, a variational Inverse modelling framework for the Chemistry Land-surface Atmosphere Soil Slab model: description, validation, and application
Peter J. M. Bosman and Maarten C. Krol
Geosci. Model Dev., 16, 47–74, https://doi.org/10.5194/gmd-16-47-2023,https://doi.org/10.5194/gmd-16-47-2023, 2023
Short summary
Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model: RegCM
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023,https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
The E3SM Diagnostics Package (E3SM Diags v2.7): a Python-based diagnostics package for Earth system model evaluation
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022,https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
A method for transporting cloud-resolving model variance in a multiscale modeling framework
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022,https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary

Cited articles

Ahmadov, R., Grell, G., James, E., Freitas, S., Pereira, G., Csiszar, I., Tsidulko, M., Pierce, B., McKeen, S., Peckham, S., Alexander, C., Saide, P., and Benjamin, S.: A High-Resolution Coupled Meteorology-Smoke Modeling System HRRR-Smoke to Simulate Air Quality over the CONUS Domain in Real Time, Geophys. Res. Abstr., 19, EGU2017–10841, https://meetingorganizer.copernicus.org/EGU2017/EGU2017-10841.pdf (last access: 30 September 2021), 2017. a
Ahmadov, R., James, E., Grell, G., Alexander, C., and McKeen, S.: Operational implementation of the smoke forecasting capability in the RAP/HRRR numerical weather prediction system, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-14268, https://doi.org/10.5194/egusphere-egu21-14268, 2021. a
Banerjee, T., Heilman, W., Goodrick, S., Hiers, J. K., and Linn, R.: Effects of Canopy Midstory Management and Fuel Moisture on Wildfire Behavior, Sci. Rep.-UK, 10, 17312, https://doi.org/10.1038/s41598-020-74338-9, 2020. a
Benech, B.: Experimental Study of an Artificial Convective Plume Initiated From the Ground., J. Appl. Meteorol. Clim., 15, 127–137, https://doi.org/10.1175/1520-0450(1976)015<0127:ESOAAC>2.0.CO;2, 1976. a
Brown, B. G., Gilleland, E., and Ebert, E. E.: Forecasts of Spatial Fields, in: Forecast Verification: A Practitioner's Guide in Atmospheric Science, edited by: Jolliffe, I. T. and Stephenson, D. B., 2nd edn., ISBN 978-0-470-66071-3, 95–117, John Wiley & Sons, 2011. a, b
Download
Short summary
We examine methods used to represent wildland fire sensible heat release in atmospheric models. A set of simulations are evaluated using observations from a low-intensity prescribed fire in the New Jersey Pine Barrens. The comparison is motivated by the need for guidance regarding the representation of low-intensity fire sensible heating in atmospheric models. Such fires are prevalent during prescribed fire operations and can impact the health and safety of fire personnel and the public.