Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-675-2021
https://doi.org/10.5194/gmd-14-675-2021
Model description paper
 | 
02 Feb 2021
Model description paper |  | 02 Feb 2021

PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers

Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans

Related authors

Determination of the Atmospheric Volatility of Pesticides using Chemical Ionisation Mass Spectrometry
Olivia Mae Jackson, Aristeidis Voliotis, Thomas J. Bannan, Simon P. O'Meara, Gordon McFiggans, Dave Johnson, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2380,https://doi.org/10.5194/egusphere-2024-2380, 2024
Short summary
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024,https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Characterisation of the Manchester Aerosol Chamber facility
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022,https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629–1642, https://doi.org/10.5194/acp-18-1629-2018,https://doi.org/10.5194/acp-18-1629-2018, 2018
Short summary
An efficient approach for treating composition-dependent diffusion within organic particles
Simon O'Meara, David O. Topping, Rahul A. Zaveri, and Gordon McFiggans
Atmos. Chem. Phys., 17, 10477–10494, https://doi.org/10.5194/acp-17-10477-2017,https://doi.org/10.5194/acp-17-10477-2017, 2017
Short summary

Related subject area

Atmospheric sciences
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024,https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024,https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024,https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary

Cited articles

Barley, M., Topping, D., and McFiggans, G.: Critical Assessment of Liquid Density Estimation Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science, J. Phys. Chem. A, 117, 3428–3441, https://doi.org/10.1021/jp304547r, 2013. a
Bertrand, A., Stefenelli, G., Pieber, S. M., Bruns, E. A., Temime-Roussel, B., Slowik, J. G., Wortham, H., Prévôt, A. S. H., El Haddad, I., and Marchand, N.: Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers, Atmos. Chem. Phys., 18, 10915–10930, https://doi.org/10.5194/acp-18-10915-2018, 2018. a
Carslaw, N., Mota, T., Jenkin, M. E., Barley, M. H., and McFiggans, G.: A Significant Role for Nitrate and Peroxide Groups on Indoor Secondary Organic Aerosol, Environ. Sci. Technol., 46, 9290–9298, https://doi.org/10.1021/es301350x, 2012. a
Charan, S. M., Huang, Y., and Seinfeld, J. H.: Computational Simulation of Secondary Organic Aerosol Formation in Laboratory Chambers, Chem. Rev., 119, 11912–11944, https://doi.org/10.1021/acs.chemrev.9b00358, 2019. a, b, c, d, e
Chen, B. T., Yeh, H. C., and Cheng, Y. S.: Evaluation of an Environmental Reaction Chamber, Aerosol Sci. Tech., 17, 9–24, https://doi.org/10.1080/02786829208959556, 1992. a
Download
Short summary
User-friendly and open-source software for simulating aerosol chambers is a valuable tool for research scientists in designing and analysing their experiments. This paper describes a new version of such software and will therefore provide a useful reference for those applying it. Central to the paper is an assessment of the software's accuracy through comparison against previously published simulations.