Articles | Volume 14, issue 2
Geosci. Model Dev., 14, 675–702, 2021
https://doi.org/10.5194/gmd-14-675-2021

Special issue: Simulation chambers as tools in atmospheric research (AMT/ACP/GMD...

Geosci. Model Dev., 14, 675–702, 2021
https://doi.org/10.5194/gmd-14-675-2021

Model description paper 02 Feb 2021

Model description paper | 02 Feb 2021

PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers

Simon Patrick O'Meara et al.

Related authors

Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629–1642, https://doi.org/10.5194/acp-18-1629-2018,https://doi.org/10.5194/acp-18-1629-2018, 2018
Short summary
An efficient approach for treating composition-dependent diffusion within organic particles
Simon O'Meara, David O. Topping, Rahul A. Zaveri, and Gordon McFiggans
Atmos. Chem. Phys., 17, 10477–10494, https://doi.org/10.5194/acp-17-10477-2017,https://doi.org/10.5194/acp-17-10477-2017, 2017
Short summary
The rate of equilibration of viscous aerosol particles
Simon O'Meara, David O. Topping, and Gordon McFiggans
Atmos. Chem. Phys., 16, 5299–5313, https://doi.org/10.5194/acp-16-5299-2016,https://doi.org/10.5194/acp-16-5299-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021,https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany
Harald Flentje, Ina Mattis, Zak Kipling, Samuel Rémy, and Werner Thomas
Geosci. Model Dev., 14, 1721–1751, https://doi.org/10.5194/gmd-14-1721-2021,https://doi.org/10.5194/gmd-14-1721-2021, 2021
Short summary
Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021,https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Seasonal and diurnal performance of daily forecasts with WRF V3.8.1 over the United Arab Emirates
Oliver Branch, Thomas Schwitalla, Marouane Temimi, Ricardo Fonseca, Narendra Nelli, Michael Weston, Josipa Milovac, and Volker Wulfmeyer
Geosci. Model Dev., 14, 1615–1637, https://doi.org/10.5194/gmd-14-1615-2021,https://doi.org/10.5194/gmd-14-1615-2021, 2021
Short summary
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021,https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary

Cited articles

Barley, M., Topping, D., and McFiggans, G.: Critical Assessment of Liquid Density Estimation Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science, J. Phys. Chem. A, 117, 3428–3441, https://doi.org/10.1021/jp304547r, 2013. a
Bertrand, A., Stefenelli, G., Pieber, S. M., Bruns, E. A., Temime-Roussel, B., Slowik, J. G., Wortham, H., Prévôt, A. S. H., El Haddad, I., and Marchand, N.: Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers, Atmos. Chem. Phys., 18, 10915–10930, https://doi.org/10.5194/acp-18-10915-2018, 2018. a
Carslaw, N., Mota, T., Jenkin, M. E., Barley, M. H., and McFiggans, G.: A Significant Role for Nitrate and Peroxide Groups on Indoor Secondary Organic Aerosol, Environ. Sci. Technol., 46, 9290–9298, https://doi.org/10.1021/es301350x, 2012. a
Charan, S. M., Huang, Y., and Seinfeld, J. H.: Computational Simulation of Secondary Organic Aerosol Formation in Laboratory Chambers, Chem. Rev., 119, 11912–11944, https://doi.org/10.1021/acs.chemrev.9b00358, 2019. a, b, c, d, e
Chen, B. T., Yeh, H. C., and Cheng, Y. S.: Evaluation of an Environmental Reaction Chamber, Aerosol Sci. Tech., 17, 9–24, https://doi.org/10.1080/02786829208959556, 1992. a
Download
Short summary
User-friendly and open-source software for simulating aerosol chambers is a valuable tool for research scientists in designing and analysing their experiments. This paper describes a new version of such software and will therefore provide a useful reference for those applying it. Central to the paper is an assessment of the software's accuracy through comparison against previously published simulations.