Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-675-2021
https://doi.org/10.5194/gmd-14-675-2021
Model description paper
 | 
02 Feb 2021
Model description paper |  | 02 Feb 2021

PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers

Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans

Related authors

Theory informed, experiment based, constraint on the rate of autoxidation chemistry – An analytical approach
Lukas Pichelstorfer, Simon P. O'Meara, and Gordon B. McFiggans
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-40,https://doi.org/10.5194/ar-2024-40, 2024
Preprint under review for AR
Short summary
Determination of the Atmospheric Volatility of Pesticides using Chemical Ionisation Mass Spectrometry
Olivia Mae Jackson, Aristeidis Voliotis, Thomas J. Bannan, Simon P. O'Meara, Gordon McFiggans, Dave Johnson, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2380,https://doi.org/10.5194/egusphere-2024-2380, 2024
Short summary
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024,https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Characterisation of the Manchester Aerosol Chamber facility
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022,https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
Maxwell–Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O'Meara
Atmos. Chem. Phys., 18, 1629–1642, https://doi.org/10.5194/acp-18-1629-2018,https://doi.org/10.5194/acp-18-1629-2018, 2018
Short summary

Related subject area

Atmospheric sciences
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary

Cited articles

Barley, M., Topping, D., and McFiggans, G.: Critical Assessment of Liquid Density Estimation Methods for Multifunctional Organic Compounds and Their Use in Atmospheric Science, J. Phys. Chem. A, 117, 3428–3441, https://doi.org/10.1021/jp304547r, 2013. a
Bertrand, A., Stefenelli, G., Pieber, S. M., Bruns, E. A., Temime-Roussel, B., Slowik, J. G., Wortham, H., Prévôt, A. S. H., El Haddad, I., and Marchand, N.: Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers, Atmos. Chem. Phys., 18, 10915–10930, https://doi.org/10.5194/acp-18-10915-2018, 2018. a
Carslaw, N., Mota, T., Jenkin, M. E., Barley, M. H., and McFiggans, G.: A Significant Role for Nitrate and Peroxide Groups on Indoor Secondary Organic Aerosol, Environ. Sci. Technol., 46, 9290–9298, https://doi.org/10.1021/es301350x, 2012. a
Charan, S. M., Huang, Y., and Seinfeld, J. H.: Computational Simulation of Secondary Organic Aerosol Formation in Laboratory Chambers, Chem. Rev., 119, 11912–11944, https://doi.org/10.1021/acs.chemrev.9b00358, 2019. a, b, c, d, e
Chen, B. T., Yeh, H. C., and Cheng, Y. S.: Evaluation of an Environmental Reaction Chamber, Aerosol Sci. Tech., 17, 9–24, https://doi.org/10.1080/02786829208959556, 1992. a
Download
Short summary
User-friendly and open-source software for simulating aerosol chambers is a valuable tool for research scientists in designing and analysing their experiments. This paper describes a new version of such software and will therefore provide a useful reference for those applying it. Central to the paper is an assessment of the software's accuracy through comparison against previously published simulations.
Share