Articles | Volume 14, issue 9
Geosci. Model Dev., 14, 5789–5823, 2021
https://doi.org/10.5194/gmd-14-5789-2021
Geosci. Model Dev., 14, 5789–5823, 2021
https://doi.org/10.5194/gmd-14-5789-2021
Model description paper
24 Sep 2021
Model description paper | 24 Sep 2021

GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios

Lee T. Murray et al.

Related authors

Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021,https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021,https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
Tropospheric ozone in CMIP6 simulations
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021,https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
An improved method for atmospheric 14CO measurements
Vasilii V. Petrenko, Andrew M. Smith, Edward M. Crosier, Roxana Kazemi, Philip Place, Aidan Colton, Bin Yang, Quan Hua, and Lee T. Murray
Atmos. Meas. Tech., 14, 2055–2063, https://doi.org/10.5194/amt-14-2055-2021,https://doi.org/10.5194/amt-14-2055-2021, 2021
Short summary
Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP
David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons
Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020,https://doi.org/10.5194/acp-20-12905-2020, 2020
Short summary

Related subject area

Atmospheric sciences
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022,https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022,https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Regional evaluation of the performance of the global CAMS chemical modeling system over the United States (IFS cycle 47r1)
Jason E.​​​​​​​ Williams, Vincent Huijnen, Idir Bouarar, Mehdi Meziane, Timo Schreurs, Sophie Pelletier, Virginie Marécal, Beatrice Josse, and Johannes Flemming
Geosci. Model Dev., 15, 4657–4687, https://doi.org/10.5194/gmd-15-4657-2022,https://doi.org/10.5194/gmd-15-4657-2022, 2022
Short summary
Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev., 15, 4555–4567, https://doi.org/10.5194/gmd-15-4555-2022,https://doi.org/10.5194/gmd-15-4555-2022, 2022
Short summary
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022,https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary

Cited articles

Achakulwisut, P., Mickley, L. J., Murray, L. T., Tai, A. P. K., Kaplan, J. O., and Alexander, B.: Uncertainties in isoprene photochemistry and emissions: implications for the oxidative capacity of past and present atmospheres and for climate forcing agents, Atmos. Chem. Phys., 15, 7977–7998, https://doi.org/10.5194/acp-15-7977-2015, 2015. a
AIRS project: Aqua/AIRS L3 Daily Standard Physical Retrieval (AIRS+AMSU) 1 degree x 1 degree V7.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/8XB4RU470FJV, 2019. a
Allen, D. J., Rood, R., Thompson, A. M., and Hudson, R.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res.-Atmos., 101, 6871–6881, https://doi.org/10.1029/95JD03408, 1996. a
Allen, D. J., Dibb, J., Ridley, B., Pickering, K., and Talbot, R.: An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations, J. Geophys. Res.-Atmos., 108, 8355, https://doi.org/10.1029/2001JD001428, 2003. a, b
Balkanski, Y., Jacob, D. J., Gardner, G., Graustein, W., and Turekian, K.: Transport and Residence Times of Tropospheric Aerosols Inferred from a Global 3-Dimensional Simulation of Pb-210, J. Geophys. Res.-Atmos., 98, 20573–20586, https://doi.org/10.1029/93jd02456, 1993. a
Download
Short summary
Chemical-transport models are tools used to study air pollution and inform public policy. However, they are limited by the availability of archived meteorology. Here, we describe how the GEOS-Chem chemical-transport model may now be driven by meteorology archived from a state-of-the-art general circulation model for past and future climates, allowing it to be used to explore the impact of climate change on air pollution and atmospheric composition.