Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5205-2021
https://doi.org/10.5194/gmd-14-5205-2021
Development and technical paper
 | 
18 Aug 2021
Development and technical paper |  | 18 Aug 2021

Copula-based synthetic data augmentation for machine-learning emulators

David Meyer, Thomas Nagler, and Robin J. Hogan

Related authors

Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025,https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Variation in shortwave water vapour continuum and impact on clear-sky shortwave radiative feedback
Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3051,https://doi.org/10.5194/egusphere-2024-3051, 2024
Short summary
Evaluating the representation of Arctic cirrus solar radiative effects in the Integrated Forecasting System with airborne measurements
Johannes Röttenbacher, André Ehrlich, Hanno Müller, Florian Ewald, Anna E. Luebke, Benjamin Kirbus, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 8085–8104, https://doi.org/10.5194/acp-24-8085-2024,https://doi.org/10.5194/acp-24-8085-2024, 2024
Short summary

Related subject area

Earth and space science informatics
The OpenMindat v1.0.0 R package: a machine interface to Mindat open data to facilitate data-intensive geoscience discoveries
Xiang Que, Jiyin Zhang, Weilin Chen, Jolyon Ralph, and Xiaogang Ma
Geosci. Model Dev., 18, 4455–4467, https://doi.org/10.5194/gmd-18-4455-2025,https://doi.org/10.5194/gmd-18-4455-2025, 2025
Short summary
A time-dependent three-dimensional dayside magnetopause model based on quasi-elastodynamic theory
Yaxin Gu, Yi Wang, Fengsi Wei, Xueshang Feng, Andrey Samsonov, Xiaojian Song, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Yalan Chen, Xiaojun Xu, and Zilu Zhou
Geosci. Model Dev., 18, 4215–4229, https://doi.org/10.5194/gmd-18-4215-2025,https://doi.org/10.5194/gmd-18-4215-2025, 2025
Short summary
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert
Geosci. Model Dev., 18, 3509–3532, https://doi.org/10.5194/gmd-18-3509-2025,https://doi.org/10.5194/gmd-18-3509-2025, 2025
Short summary
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary

Cited articles

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insur. Math. Econ., 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. 
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A System for Large-Scale Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, 265–283, 2016. 
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization, J. Adv. Model. Earth Syst., 11, 376–399, https://doi.org/10.1029/2018MS001472, 2019. 
Brenowitz, N. D. and Bretherton, C. S.: Prognostic Validation of a Neural Network Unified Physics Parameterization, Geophys. Res. Lett., 45, 6289–6298, https://doi.org/10.1029/2018GL078510, 2018. 
Cheruy, F., Chevallier, F., Morcrette, J.-J., Scott, N. A., and Chédin, A.: Une méthode utilisant les techniques neuronales pour le calcul rapide de la distribution verticale du bilan radiatif thermique terrestre, Comptes Rendus de l'Academie des Sciences Serie II, 322, 665–672, hal-02954375, 1996. 
Download
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Share