Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5205-2021
https://doi.org/10.5194/gmd-14-5205-2021
Development and technical paper
 | 
18 Aug 2021
Development and technical paper |  | 18 Aug 2021

Copula-based synthetic data augmentation for machine-learning emulators

David Meyer, Thomas Nagler, and Robin J. Hogan

Related authors

Variation in shortwave water vapour continuum and impact on clear-sky shortwave radiative feedback
Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer
Atmos. Chem. Phys., 25, 11689–11701, https://doi.org/10.5194/acp-25-11689-2025,https://doi.org/10.5194/acp-25-11689-2025, 2025
Short summary
Introducing aerosol-cloud interactions in the ECMWF model reveals new constraints on aerosol representation
Paolo Andreozzi, Mark D. Fielding, Robin J. Hogan, Richard M. Forbes, Samuel Rémy, Birger Bohn, and Ulrich Löhnert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3790,https://doi.org/10.5194/egusphere-2025-3790, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025,https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence, Insur. Math. Econ., 44, 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001, 2009. 
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A System for Large-Scale Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, 265–283, 2016. 
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization, J. Adv. Model. Earth Syst., 11, 376–399, https://doi.org/10.1029/2018MS001472, 2019. 
Brenowitz, N. D. and Bretherton, C. S.: Prognostic Validation of a Neural Network Unified Physics Parameterization, Geophys. Res. Lett., 45, 6289–6298, https://doi.org/10.1029/2018GL078510, 2018. 
Cheruy, F., Chevallier, F., Morcrette, J.-J., Scott, N. A., and Chédin, A.: Une méthode utilisant les techniques neuronales pour le calcul rapide de la distribution verticale du bilan radiatif thermique terrestre, Comptes Rendus de l'Academie des Sciences Serie II, 322, 665–672, hal-02954375, 1996. 
Download
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Share