Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5155-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5155-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Geoinformatics Research Group, Department of Built Environment, Aalto
University, Espoo, Finland
Water and Development Research Group, Department of Built
Environment, Aalto University, Espoo, Finland
Joseph H. A. Guillaume
Institute for Water Futures & Fenner School of Environment and
Society, Australian National University, Canberra, Australia
Vili Virkki
Water and Development Research Group, Department of Built
Environment, Aalto University, Espoo, Finland
Matti Kummu
Water and Development Research Group, Department of Built
Environment, Aalto University, Espoo, Finland
Kirsi Virrantaus
Geoinformatics Research Group, Department of Built Environment, Aalto
University, Espoo, Finland
Related authors
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Matias Heino, Joseph H. A. Guillaume, Christoph Müller, Toshichika Iizumi, and Matti Kummu
Earth Syst. Dynam., 11, 113–128, https://doi.org/10.5194/esd-11-113-2020, https://doi.org/10.5194/esd-11-113-2020, 2020
Short summary
Short summary
In this study, we analyse the impacts of three major climate oscillations on global crop production. Our results show that maize, rice, soybean, and wheat yields are influenced by climate oscillations to a wide extent and in several important crop-producing regions. We observe larger impacts if crops are rainfed or fully fertilized, while irrigation tends to mitigate the impacts. These results can potentially help to increase the resilience of the global food system to climate-related shocks.
Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu
Hydrol. Earth Syst. Sci., 22, 2795–2809, https://doi.org/10.5194/hess-22-2795-2018, https://doi.org/10.5194/hess-22-2795-2018, 2018
Short summary
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
Dung Duc Tran, Gerardo van Halsema, Petra J. G. J. Hellegers, Long Phi Hoang, Tho Quang Tran, Matti Kummu, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 22, 1875–1896, https://doi.org/10.5194/hess-22-1875-2018, https://doi.org/10.5194/hess-22-1875-2018, 2018
Short summary
Short summary
We modeled hydrological changes under impacts of large-scale dike constructions for intensive rice production in the floodplain of the Vietnamese Mekong Delta. Four scenarios show a significant increase in peak water levels in the upstream rivers, but very few water level changes are found downstream. Water balance calculations show where the floodwater goes under four dike construction scenarios. Its impacts on the tidal areas need to be clarified in the future with a 3-D hydraulic model.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Timo A. Räsänen, Ville Lindgren, Joseph H. A. Guillaume, Brendan M. Buckley, and Matti Kummu
Clim. Past, 12, 1889–1905, https://doi.org/10.5194/cp-12-1889-2016, https://doi.org/10.5194/cp-12-1889-2016, 2016
Short summary
Short summary
El Niño-Southern Oscillation (ENSO) is linked to severe droughts and floods in mainland Southeast Asia. This research provides a more accurate and uniform picture of the spatio-temporal effects of ENSO on precipitation (1980–2013) and improves our understanding of long-term (1650–2004) ENSO teleconnection and its variability over the study area. The results reveal not only recognisable spatio-temporal patterns but also a high degree of variability and non-stationarity in the effects of ENSO.
Long Phi Hoang, Hannu Lauri, Matti Kummu, Jorma Koponen, Michelle T. H. van Vliet, Iwan Supit, Rik Leemans, Pavel Kabat, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 20, 3027–3041, https://doi.org/10.5194/hess-20-3027-2016, https://doi.org/10.5194/hess-20-3027-2016, 2016
Short summary
Short summary
We modelled hydrological changes under climate change in the Mekong River, focusing on extreme events. The scenario ensemble shows an intensification of the hydrological cycle under climate change. Annual river flow increases between 5 and 16 % depending on locations. Extreme high flows increase substantially in both magnitude and frequency, posing threats to flood safety in the basin. Extreme low-flow events are projected to reduce as a result of increased river flow during the dry season.
J. Jägermeyr, D. Gerten, J. Heinke, S. Schaphoff, M. Kummu, and W. Lucht
Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, https://doi.org/10.5194/hess-19-3073-2015, 2015
Short summary
Short summary
We present a process-based simulation of global irrigation systems for the world’s major crop types. This study advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems, a prerequisite for refined simulation of crop yields under climate change. We reveal for many river basins the potential for sizeable water savings and related increases in water productivity through irrigation improvements.
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
M. E. Arias, T. Piman, H. Lauri, T. A. Cochrane, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 5303–5315, https://doi.org/10.5194/hess-18-5303-2014, https://doi.org/10.5194/hess-18-5303-2014, 2014
Short summary
Short summary
Hydrological modeling and assessment tools were used to provide evidence of the expected hydrological alterations that hydropower development in the lower Mekong tributaries could bring to the Tonle Sap. The most significant alterations are in terms of water levels during the dry season and rates of water level rise/drop which are crucial for tree seed germination and fish migrations, and therefore major ecological disruptions are likely to follow.
M. Kummu, D. Gerten, J. Heinke, M. Konzmann, and O. Varis
Hydrol. Earth Syst. Sci., 18, 447–461, https://doi.org/10.5194/hess-18-447-2014, https://doi.org/10.5194/hess-18-447-2014, 2014
P. J. Ward, S. Eisner, M. Flörke, M. D. Dettinger, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 47–66, https://doi.org/10.5194/hess-18-47-2014, https://doi.org/10.5194/hess-18-47-2014, 2014
T. A. Räsänen, C. Lehr, I. Mellin, P. J. Ward, and M. Kummu
Hydrol. Earth Syst. Sci., 17, 2069–2081, https://doi.org/10.5194/hess-17-2069-2013, https://doi.org/10.5194/hess-17-2069-2013, 2013
M. Meybeck, M. Kummu, and H. H. Dürr
Hydrol. Earth Syst. Sci., 17, 1093–1111, https://doi.org/10.5194/hess-17-1093-2013, https://doi.org/10.5194/hess-17-1093-2013, 2013
H. Lauri, H. de Moel, P. J. Ward, T. A. Räsänen, M. Keskinen, and M. Kummu
Hydrol. Earth Syst. Sci., 16, 4603–4619, https://doi.org/10.5194/hess-16-4603-2012, https://doi.org/10.5194/hess-16-4603-2012, 2012
Related subject area
Hydrology
DECIPHeR-GW v1: a coupled hydrological model with improved representation of surface–groundwater interactions
Wastewater matters: incorporating wastewater treatment and reuse into a process-based hydrological model (CWatM v1.08)
A reach-integrated hydraulic modelling approach for large-scale and real-time inundation mapping
Graphical representation of global water models
LM4-SHARC v1.0: resolving the catchment-scale soil–hillslope aquifer–river continuum for the GFDL Earth system modeling framework
SWAT+MODFLOW: A New Hydrologic Model for Simulating Surface-Subsurface Flow in Managed Watersheds
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
SMASH v1.0: A Differentiable and Regionalizable High-Resolution Hydrological Modeling and Data Assimilation Framework
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Virtual Joint Field Campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
SERGHEI v2.0: introducing a performance-portable, high-performance, three-dimensional variably saturated subsurface flow solver (SERGHEI-RE)
A component based modular treatment of the soil-plant-atmosphere continuum: the GEOSPACE framework (v.1.2.9)
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Generalised drought index: a novel multi-scale daily approach for drought assessment
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Fluvial flood inundation and socio-economic impact model based on open data
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0)
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris E. Wendt
Geosci. Model Dev., 18, 4247–4271, https://doi.org/10.5194/gmd-18-4247-2025, https://doi.org/10.5194/gmd-18-4247-2025, 2025
Short summary
Short summary
Groundwater is vital for people and ecosystems, but most physical models lack the representation of surface–groundwater interactions, leading to inaccurate streamflow predictions in groundwater-rich areas. This study presents DECIPHeR-GW v1, which links surface and groundwater systems to improve predictions of streamflow and groundwater levels. Tested across England and Wales, DECIPHeR-GW shows high accuracy, especially in southeast England, making it a valuable tool for large-scale water management.
Dor Fridman, Mikhail Smilovic, Peter Burek, Sylvia Tramberend, and Taher Kahil
Geosci. Model Dev., 18, 3735–3754, https://doi.org/10.5194/gmd-18-3735-2025, https://doi.org/10.5194/gmd-18-3735-2025, 2025
Short summary
Short summary
Global hydrological models are applied at high spatial resolutions to quantify water availability and evaluate water scarcity mitigation options. Yet, they mainly oversee critical local processes. This paper presents and demonstrates the inclusion of wastewater treatment and reuse into a global hydrological model. As a result, model performance improves, and models consider treated wastewater as an alternative water source.
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev., 18, 3387–3403, https://doi.org/10.5194/gmd-18-3387-2025, https://doi.org/10.5194/gmd-18-3387-2025, 2025
Short summary
Short summary
We aim to improve mapping of floods and present a new method for hydraulic modelling that uses a combination of novel geospatial analysis and existing hydraulic modelling approaches. This method is wrapped into a modelling software called Blackbird. We compared Blackbird with two other existing options for flood mapping and found that the Blackbird model outperformed both. The Blackbird model has the potential to support real-time and large-scale flood mapping applications in the future.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Minki Hong, Nathaniel Chaney, Sergey Malyshev, Enrico Zorzetto, Anthony Preucil, and Elena Shevliakova
Geosci. Model Dev., 18, 2275–2301, https://doi.org/10.5194/gmd-18-2275-2025, https://doi.org/10.5194/gmd-18-2275-2025, 2025
Short summary
Short summary
This study shows the significance of groundwater in resolving the coupled terrestrial water–energy cycle. LM4-SHARC (soil–hillslope aquifer–river continuum) describes the hillslope groundwater using its emergent properties, yielding noticeable improvements in soil moisture/temperature and groundwater discharge predictions. The implications of groundwater-mediated hydrologic interactions between hillslopes and streams need further exploration in the Earth system modeling community.
Ryan Bailey, Salam Abbas, Jeffrey Arnold, and Michael White
EGUsphere, https://doi.org/10.5194/egusphere-2025-300, https://doi.org/10.5194/egusphere-2025-300, 2025
Short summary
Short summary
Water managers often make use of computer models to assess a region’s water supply under future conditions and management scenarios. This article introduces a new computer model that combines a land surface model (SWAT+) and a groundwater model (MODFLOW) and shows how it can be applied to managed, irrigated watersheds. This new model can be used for regions that rely on both surface water and groundwater for drinking water, agriculture, and industry.
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025, https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
Short summary
Hydrologists are often faced with selecting amongst a set of competing models with different numbers of parameters and ability to fit available data. Bayes’ factor is a tool that can be used to compare models; however, it is very difficult to compute Bayes' factor numerically. In our paper, we explore and develop highly efficient algorithms for computing Bayes’ factor of hydrological systems, which will introduce this useful tool for selecting models into everyday hydrological practice.
François Colleoni, Ngo Nghi Truyen Huynh, Pierre-André Garambois, Maxime Jay-Allemand, Didier Organde, Benjamin Renard, Thomas De Fournas, Apolline El Baz, Julie Demargne, and Pierre Javelle
EGUsphere, https://doi.org/10.5194/egusphere-2025-690, https://doi.org/10.5194/egusphere-2025-690, 2025
Short summary
Short summary
We present smash, an open-source framework for high-resolution hydrological modeling and data assimilation. It combines process-based models with neural networks for regionalization, enabling accurate simulations from catchment to country scale. With an efficient, differentiable solver, smash supports large-scale calibration and parallel computing. Tested on open datasets, it shows strong performance in river flow prediction, making it a valuable tool for research and operational use.
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025, https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Short summary
We present the Water Table Model (WTM), a new model for simulating groundwater and lake levels at continental scales over millennia. The WTM enables long-term evaluations of water-table changes. As a proof of concept, we simulate the North American water table for the present and the Last Glacial Maximum (LGM), showing that North America held more groundwater and lake water during the LGM than it does today – enough to lower sea levels by 14.98 cm. The open-source code is available on GitHub.
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025, https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary
Short summary
pyBL is an open-source package for generating realistic rainfall time series based on the Bartlett–Lewis (BL) model. It can preserve not only standard but also extreme rainfall statistics across various timescales. Notably, compared to traditional frequency analysis methods, the BL model requires only half the record length (or even shorter) to achieve similar consistency in estimating sub-hourly rainfall extremes. This makes it a valuable tool for modelling rainfall extremes with short records.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
Geosci. Model Dev., 18, 547–562, https://doi.org/10.5194/gmd-18-547-2025, https://doi.org/10.5194/gmd-18-547-2025, 2025
Short summary
Short summary
We introduce SERGHEI-RE, a 3D subsurface flow simulator with performance-portable parallel computing capabilities. SERGHEI-RE performs effectively on various computational devices: from personal computers to advanced clusters. It allows users to solve flow equations with multiple numerical schemes, making it adaptable to various hydrological scenarios. Testing results show its accuracy and performance, confirming that SERGHEI-RE is a powerful tool for hydrological research.
Concetta D'Amato, Niccolò Tubini, and Riccardo Rigon
EGUsphere, https://doi.org/10.5194/egusphere-2024-4128, https://doi.org/10.5194/egusphere-2024-4128, 2025
Short summary
Short summary
This paper presents GEOSPACE and its 1D implementation: an open-source tool for simulating soil-plant-atmosphere continuum (SPAC) interactions. Using object-oriented programming, GEOSPACE modularizes SPAC processes, focusing on infiltration, evapotranspiration, and root water uptake. The 1D deployment integrates plant transpiration, soil evaporation, and root growth, providing a flexible and validated framework for ecohydrological modeling and applications.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024, https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP, which has been used for numerous water resource assessments since 1996. We show the effects of new model features, as well as model evaluations, against water abstraction statistics and observed streamflow and water storage anomalies. The publicly available model output for several variants is described.
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024, https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
Short summary
Valid simulation results from global hydrological models (GHMs) are essential, e.g., to studying climate change impacts. Adapting GHMs to ungauged basins requires regionalization, enabling valid simulations. In this study, we highlight the impact of regionalization of GHMs on runoff simulations using an ensemble of regionalization methods for WaterGAP3. We have found that regionalization leads to temporally and spatially varying uncertainty, potentially reaching up to inter-model differences.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Short summary
We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024, https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Short summary
Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024, https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
Short summary
We present a parsimonious snow model which simulates snow mass without the need for extensive calibration. The model is based on a machine learning algorithm that has been trained on diverse set of daily observations of snow accumulation or melt, along with corresponding climate and topography data. We validated the model using in situ data from numerous new locations. The model provides a promising solution for accurate snow mass estimation across regions where in situ data are limited.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Cited articles
Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the
Selection of Hydrological Models, Water Resour. Res., 55, 378–390,
https://doi.org/10.1029/2018WR022958, 2019.
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme,
C., and Salamon, P.: A global streamflow reanalysis for 1980–2018, J.
Hydrol. X, 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020.
Allen, P. M., Arnold, J. C., and Byars, B. W.: Downstream Channel Geometry
for Use in Planning-Level Models1, JAWRA J. Am. Water Resour. Assoc., 30,
663–671, https://doi.org/10.1111/j.1752-1688.1994.tb03321.x, 1994.
Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's
roughness coefficients for natural channels and flood plains, Guide for
selecting Manning's roughness coefficients for natural channels and flood
plains, U.S. G.P.O., For sale by the Books and Open-File Reports Section,
U.S. Geological Survey, https://doi.org/10.3133/wsp2339, 1989.
Arsenault, R. and Brissette, F.: Multi-model averaging for continuous
streamflow prediction in ungauged basins, Hydrol. Sci. J., 61, 2443–2454,
https://doi.org/10.1080/02626667.2015.1117088, 2016.
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A
comparative analysis of 9 multi-model averaging approaches in hydrological
continuous streamflow simulation, J. Hydrol., 529, 754–767,
https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Blair, P. and Buytaert, W.: Socio-hydrological modelling: a review asking “why, what and how?”, Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, 2016.
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in
modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520,
https://doi.org/10.1002/wat2.1520, 2021.
Brunsdon, C.: pycno: Pycnophylactic Interpolation, R package version 1.2, available at: https://CRAN.R-project.org/package=pycno (last access: 11 August 2021),
2014.
Chow, V. T.: Open-Channel Hydraulics, McGraw Hill, New York, 1959.
Comber, A. and Zeng, W.: Spatial interpolation using areal features: A
review of methods and opportunities using new forms of data with coded
illustrations, Geogr. Compass, 13, e12465,
https://doi.org/10.1111/gec3.12465, 2019.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method
(Musklngum Method), J. Hydraul. Res., 7, 205–230,
https://doi.org/10.1080/00221686909500264, 1969.
Cunha, L. K., Mandapaka, P. V., Krajewski, W. F., Mantilla, R., and Bradley,
A. A.: Impact of radar-rainfall error structure on estimated flood magnitude
across scales: An investigation based on a parsimonious distributed
hydrological model, Water Resour. Res., 48, W10515,
https://doi.org/10.1029/2012WR012138, 2012.
Dallaire, C. O., Lehner, B., Sayre, R., and Thieme, M.: A multidisciplinary
framework to derive global river reach classifications at high spatial
resolution, Environ. Res. Lett., 14, 024003,
https://doi.org/10.1088/1748-9326/aad8e9, 2019.
Dang, T. D., Chowdhury, A. F. M. K., and Galelli, S.: On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, 2020.
Dark, S. J. and Bram, D.: The modifiable areal unit problem (MAUP) in
physical geography, Prog. Phys. Geogr. Earth Environ., 31, 471–479,
https://doi.org/10.1177/0309133307083294, 2007.
David, C. H., Maidment, D. R., Niu, G.-Y., Yang, Z.-L., Habets, F., and
Eijkhout, V.: River Network Routing on the NHDPlus Dataset, J.
Hydrometeorol., 12, 913–934, https://doi.org/10.1175/2011JHM1345.1, 2011.
Delaigue, O., Thirel, G., Coron, L., and Brigode, P.: airGR and
airGRteaching: Two Open-Source Tools for Rainfall-Runoff Modeling and
Teaching Hydrology, in: EPiC Series in Engineering, HIC 2018, 13th
International Conference on Hydroinformatics, 541–548,
https://doi.org/10.29007/qsqj, 2018.
Demir, I. and Szczepanek, R.: Optimization of river network representation
data models for web-based systems, Earth Space Sci., 4, 336–347,
https://doi.org/10.1002/2016EA000224, 2017.
Diks, C. G. H. and Vrugt, J. A.: Comparison of point forecast accuracy of
model averaging methods in hydrologic applications, Stoch. Environ. Res.
Risk Assess., 24, 809–820, https://doi.org/10.1007/s00477-010-0378-z, 2010.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018.
Döll, P. and Lehner, B.: Validation of a new global 30-min drainage
direction map, J. Hydrol., 258, 214–231,
https://doi.org/10.1016/S0022-1694(01)00565-0, 2002.
Eicher, C. L. and Brewer, C. A.: Dasymetric Mapping and Areal Interpolation:
Implementation and Evaluation, Cartogr. Geogr. Inf. Sci., 28, 125–138,
https://doi.org/10.1559/152304001782173727, 2001.
Eränen, D., Oksanen, J., Westerholm, J., and Sarjakoski, T.: A full
graphics processing unit implementation of uncertainty-aware drainage basin
delineation, Comput. Geosci., 73, 48–60,
https://doi.org/10.1016/j.cageo.2014.08.012, 2014.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Goodchild, M. F. and Lam, N. S. N.: Areal interpolation: A variant of the
traditional spatial problem, Geo-Process., 1, 297–312, 1980.
Goodchild, M. F., Anselin, L., and Deichmann, U.: A Framework for the Areal
Interpolation of Socioeconomic Data, Environ. Plan. Econ. Space, 25,
383–397, https://doi.org/10.1068/a250383, 1993.
Gosling, S., Müller Schmied, H., Betts, R., Chang, J., Ciais, P.,
Dankers, R., Döll, P., Eisner, S., Flörke, M., Gerten, D.,
Grillakis, M., Hanasaki, N., Hagemann, S., Huang, M., Huang, Z., Jerez, S.,
Kim, H., Koutroulis, A., Leng, G., Liu, X., Masaki, Y., Montavez, P.,
Morfopoulos, C., Oki, T., Papadimitriou, L., Pokhrel, Y., Portmann, F. T.,
Orth, R., Ostberg, S., Satoh, Y., Seneviratne, S., Sommer, P., Stacke, T.,
Tang, Q., Tsanis, I., Wada, Y., Zhou, T., Büchner, M., Schewe, J., and
Zhao, F.: ISIMIP2a Simulation Data from Water (global) Sector, GFZ Data Services, Potsdam, Germany,
https://doi.org/10.5880/pik.2017.010, 2017.
Gosling, S. N., Bretherton, D., Haines, K., and Arnell, N. W.: Global
hydrology modelling and uncertainty: running multiple ensembles with a
campus grid, Philos. T. R. Soc. Math. Phys. Eng. Sci., 368, 4005–4021,
https://doi.org/10.1098/rsta.2010.0164, 2010.
Gottschalk, L.: Interpolation of runoff applying objective methods, Stoch.
Hydrol. Hydraul., 7, 269–281, https://doi.org/10.1007/BF01581615, 1993.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/J.JHYDROL.2009.08.003, 2009.
Hamilton, S. H., Fu, B., Guillaume, J. H. A., Badham, J., Elsawah, S.,
Gober, P., Hunt, R. J., Iwanaga, T., Jakeman, A. J., Ames, D. P., Curtis,
A., Hill, M. C., Pierce, S. A., and Zare, F.: A framework for characterising
and evaluating the effectiveness of environmental modelling, Environ. Model.
Softw., 118, 83–98, https://doi.org/10.1016/j.envsoft.2019.04.008, 2019.
Hobeichi, S., Abramowitz, G., Evans, J., and Beck, H. E.: Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product, Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019, 2019.
Kallio, M.: mkkallio/GMD_hydrostreamer: GMD hydrostreamer manuscript
code and part of the data (Version 1.0) [code], Zenodo, https://doi.org/10.5281/zenodo.4739212, 2020.
Kallio, M. and Virkki, V.: mkkallio/hydrostreamer: hydrostreamer v1.0.1 (Version 1.0.1) [code], Zenodo, https://doi.org/10.5281/zenodo.4739223, 2021.
Kallio, M., Virkki, V., Guillaume, J. H. A., and van Dijk, A. I. J. M.:
Downscaling runoff products using areal interpolation: a combined
pycnophylactic-dasymetric method, in: MODSIM2019, 23rd
International Congress on Modelling and Simulation., 23rd International
Congress on Modelling and Simulation (MODSIM2019), edited by: El Sawah, S.,
https://doi.org/10.36334/modsim.2019.K8.kallio, 2019.
Kar, B. and Hodgson, M. E.: A Process Oriented Areal Interpolation
Technique: A Coastal County Example, Cartogr. Geogr. Inf. Sci., 39, 3–16,
https://doi.org/10.1559/152304063913, 2012.
Karimipour, F., Ghandehari, M., and Ledoux, H.: Watershed delineation from
the medial axis of river networks, Comput. Geosci., 59, 132–147,
https://doi.org/10.1016/J.CAGEO.2013.06.004, 2013.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, Eos Trans. Am. Geophys. Union, 89, 93–94,
https://doi.org/10.1029/2008EO100001, 2008.
Leopold, L. B. and Maddock Jr., T.: The hydraulic geometry of stream
channels and some physiographic implications, The hydraulic geometry of
stream channels and some physiographic implications, U.S. Government
Printing Office, Washington, D.C., https://doi.org/10.3133/pp252, 1953.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million
Reaches, Water Resour. Res., 55, 6499–6516,
https://doi.org/10.1029/2019WR025287, 2019.
Lindsay, J. B. and Evans, M. G.: The influence of elevation error on the
morphometrics of channel networks extracted from DEMs and the implications
for hydrological modelling, Hydrol. Process., 22, 1588–1603,
https://doi.org/10.1002/hyp.6728, 2008.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand,
M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and
Thieme, M.: Global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. Data, 6, 283,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., and Zehe, E.: A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation, Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, 2019.
Manley, D.: Scale, Aggregation, and the Modifiable Areal Unit Problem, in:
Handbook of Regional Science, edited by: Fischer, M. M. and Nijkamp, P.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1157–1171,
https://doi.org/10.1007/978-3-642-23430-9_69, 2014.
Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger, R. J., Markstrom, S. L., Hay, L. E., Woods, R., Arnold, J. R., and Brekke, L. D.: mizuRoute version 1: a river network routing tool for a continental domain water resources applications, Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, 2016.
Moody, J. A. and Troutman, B. M.: Characterization of the spatial
variability of channel morphology, Earth Surf. Process. Landf., 27,
1251–1266, https://doi.org/10.1002/esp.403, 2002.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and
Water Quality Models: Performance Measures and Evaluation Criteria, Trans.
ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
MRC: MRC Data and Information Services Portal, available at: http://portal.mrcmekong.org/ (last access: 15 January 2021),
2017.
Nagle, N. N., Buttenfield, B. P., Leyk, S., and Speilman, S.: Dasymetric
Modeling and Uncertainty, Ann. Assoc. Am. Geogr. Assoc. Am. Geogr., 104,
80–95, https://doi.org/10.1080/00045608.2013.843439, 2014.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Paiva, R. C. D., Durand, M. T., and Hossain, F.: Spatiotemporal
interpolation of discharge across a river network by using synthetic SWOT
satellite data, Water Resour. Res., 51, 430–449,
https://doi.org/10.1002/2014WR015618, 2015.
Parajka, J., Merz, R., Skøien, J. O., and Viglione, A.: The role of
station density for predicting daily runoff by top-kriging interpolation in
Austria, J. Hydrol. Hydromech., 63, 228–234,
https://doi.org/10.1515/johh-2015-0024, 2015.
Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector
Data, The R Journal, 10, 439–446, 2018.
Ponce, V.: 10.6 Muskingum-Cunge Method, in: Fundamentals of Open Channel
Hydraulics, San Diego State University, 2014.
Prener, C. and Revord, C.: areal: An R package for areal weighted
interpolation, J. Open Source Softw., 4, 1221,
https://doi.org/10.21105/joss.01221, 2019.
Rase, W.-D.: Volume-preserving interpolation of a smooth surface from
polygon-related data, J. Geogr. Syst., 3, 199–213,
https://doi.org/10.1007/PL00011475, 2001.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2019.
Salmivaara, A., Porkka, M., Kummu, M., Keskinen, M., Guillaume, J. H. A.,
and Varis, O.: Exploring the Modifiable Areal Unit Problem in Spatial Water
Assessments: A Case of Water Shortage in Monsoon Asia, Water, 7, 898–917,
https://doi.org/10.3390/w7030898, 2015.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Shaw, S. B., Beslity, J. O., and Colvin, M. E.: Working Toward a More
Holistic Set of Hydrologic Principles to Teach Non-Hydrologists: Five Simple
Concepts Within Catchment Hydrology, Hydrol. Process., 13485,
https://doi.org/10.1002/hyp.13485, 2019.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006.
Singh, V. P. and Woolhiser, D. A.: Mathematical Modeling of Watershed
Hydrology, J. Hydrol. Eng., 7, 270–292,
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270), 2002.
Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging – geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10, 277–287, https://doi.org/10.5194/hess-10-277-2006, 2006.
Skøien, J. O., Bogner, K., Salamon, P., Smith, P., and Pappenberger, F.: Regionalization of post-processed ensemble runoff forecasts, Proc. IAHS, 373, 109–114, https://doi.org/10.5194/piahs-373-109-2016, 2016.
Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., Prosdocimi, I., Vitolo, C., and Smith, K.: Using R in hydrology: a review of recent developments and future directions, Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, 2019.
Subramanya, K.: Engineering hydrology, McGraw Hill Education, New York, 2017.
Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, 2021.
Tobler, W. R.: Smooth Pycnophylactic Interpolation for Geographical Regions,
J. Am. Stat. Assoc., 74, 519–530, https://doi.org/10.2307/2286968, 1979.
Vatankhah, A. R. and Easa, S. M.: Depth-independent kinematic wave
parameters for trapezoidal and power-law channels, Ain Shams Eng. J., 4,
173–183, https://doi.org/10.1016/j.asej.2012.08.010, 2013.
Velázquez, J. A., Anctil, F., Ramos, M. H., and Perrin, C.: Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures, Adv. Geosci., 29, 33–42, https://doi.org/10.5194/adgeo-29-33-2011, 2011.
Venhuizen, G. J., Hut, R., Albers, C., Stoof, C. R., and Smeets, I.: Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience, Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, 2019.
Virkki, V.: The value of open-source river streamflow estimation in
Southeast Asia, available at: https://aaltodoc.aalto.fi/handle/123456789/36357 (last access: 1 January 2020), 2019.
Vrugt, J. A. and Robinson, B. A.: Treatment of uncertainty using ensemble
methods: Comparison of sequential data assimilation and Bayesian model
averaging, Water Resour. Res., 43, W01411, https://doi.org/10.1029/2005WR004838,
2007.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T. L., Miller E., Bache S. M., Müller K., Ooms J., Robinson D., Seidel D. P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H.: Welcome to the Tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wright, J. K.: A Method of Mapping Densities of Population: With Cape Cod as
an Example, Geogr. Rev., 26, 103–110, https://doi.org/10.2307/209467, 1936.
Zaherpour, J., Mount, N., Gosling, S. N., Dankers, R., Eisner, S., Gerten,
D., Liu, X., Masaki, Y., Müller Schmied, H., Tang, Q., and Wada, Y.:
Exploring the value of machine learning for weighted multi-model combination
of an ensemble of global hydrological models, Environ. Model. Softw., 114,
112–128, https://doi.org/10.1016/j.envsoft.2019.01.003, 2019.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for
comparison of simulated and observed hydrological time series, Zenodo,
https://doi.org/10.5281/zenodo.840087, 2017.
Short summary
Different runoff and streamflow products are freely available but may come with unsuitable spatial units. On the other hand, starting a new modelling exercise may require considerable resources. Hydrostreamer improves the usability of existing runoff products, allowing runoff and streamflow estimates at the desired spatial units with minimal data requirements and intuitive workflow. The case study shows that Hydrostreamer performs well compared to benchmark products and observation data.
Different runoff and streamflow products are freely available but may come with unsuitable...