Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5155-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5155-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Geoinformatics Research Group, Department of Built Environment, Aalto
University, Espoo, Finland
Water and Development Research Group, Department of Built
Environment, Aalto University, Espoo, Finland
Joseph H. A. Guillaume
Institute for Water Futures & Fenner School of Environment and
Society, Australian National University, Canberra, Australia
Vili Virkki
Water and Development Research Group, Department of Built
Environment, Aalto University, Espoo, Finland
Matti Kummu
Water and Development Research Group, Department of Built
Environment, Aalto University, Espoo, Finland
Kirsi Virrantaus
Geoinformatics Research Group, Department of Built Environment, Aalto
University, Espoo, Finland
Related authors
Marko Kallio, Pihla Seppälä, Lauri Ahopelto, Amy Fallon, Pekka Kinnunen, Matias Heino, and Matti Kummu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3909, https://doi.org/10.5194/egusphere-2025-3909, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Droughts which impact precipitation, soil moisture and streamflow are more impactful than droughts affecting any one compartment separately. We perform the first global multi-model assessment of (simultaneously co-occurring) compound droughts. We find that compound droughts have become more widespread and more likely across 1961–2020 except for the boreal environments. The global models, however, have high uncertainty: there is a need for global models targeting droughts specifically.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Marko Kallio, Pihla Seppälä, Lauri Ahopelto, Amy Fallon, Pekka Kinnunen, Matias Heino, and Matti Kummu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3909, https://doi.org/10.5194/egusphere-2025-3909, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Droughts which impact precipitation, soil moisture and streamflow are more impactful than droughts affecting any one compartment separately. We perform the first global multi-model assessment of (simultaneously co-occurring) compound droughts. We find that compound droughts have become more widespread and more likely across 1961–2020 except for the boreal environments. The global models, however, have high uncertainty: there is a need for global models targeting droughts specifically.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360, https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Short summary
Recurrent droughts are causing severe damages to tropical countries. We used gridded drought hazard and vulnerability data sets to map drought risk in four mesoscale rural tropical study regions in Latin America and Vietnam/Cambodia. Our risk maps clearly identified drought risk hotspots and displayed spatial and sector-wise distribution of hazard and vulnerability. As results were confirmed by local stakeholders our approach provides relevant information for drought managers in the Tropics.
Cited articles
Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the
Selection of Hydrological Models, Water Resour. Res., 55, 378–390,
https://doi.org/10.1029/2018WR022958, 2019.
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme,
C., and Salamon, P.: A global streamflow reanalysis for 1980–2018, J.
Hydrol. X, 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020.
Allen, P. M., Arnold, J. C., and Byars, B. W.: Downstream Channel Geometry
for Use in Planning-Level Models1, JAWRA J. Am. Water Resour. Assoc., 30,
663–671, https://doi.org/10.1111/j.1752-1688.1994.tb03321.x, 1994.
Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's
roughness coefficients for natural channels and flood plains, Guide for
selecting Manning's roughness coefficients for natural channels and flood
plains, U.S. G.P.O., For sale by the Books and Open-File Reports Section,
U.S. Geological Survey, https://doi.org/10.3133/wsp2339, 1989.
Arsenault, R. and Brissette, F.: Multi-model averaging for continuous
streamflow prediction in ungauged basins, Hydrol. Sci. J., 61, 2443–2454,
https://doi.org/10.1080/02626667.2015.1117088, 2016.
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., and Martel, J.-L.: A
comparative analysis of 9 multi-model averaging approaches in hydrological
continuous streamflow simulation, J. Hydrol., 529, 754–767,
https://doi.org/10.1016/j.jhydrol.2015.09.001, 2015.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Blair, P. and Buytaert, W.: Socio-hydrological modelling: a review asking “why, what and how?”, Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, 2016.
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in
modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520,
https://doi.org/10.1002/wat2.1520, 2021.
Brunsdon, C.: pycno: Pycnophylactic Interpolation, R package version 1.2, available at: https://CRAN.R-project.org/package=pycno (last access: 11 August 2021),
2014.
Chow, V. T.: Open-Channel Hydraulics, McGraw Hill, New York, 1959.
Comber, A. and Zeng, W.: Spatial interpolation using areal features: A
review of methods and opportunities using new forms of data with coded
illustrations, Geogr. Compass, 13, e12465,
https://doi.org/10.1111/gec3.12465, 2019.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method
(Musklngum Method), J. Hydraul. Res., 7, 205–230,
https://doi.org/10.1080/00221686909500264, 1969.
Cunha, L. K., Mandapaka, P. V., Krajewski, W. F., Mantilla, R., and Bradley,
A. A.: Impact of radar-rainfall error structure on estimated flood magnitude
across scales: An investigation based on a parsimonious distributed
hydrological model, Water Resour. Res., 48, W10515,
https://doi.org/10.1029/2012WR012138, 2012.
Dallaire, C. O., Lehner, B., Sayre, R., and Thieme, M.: A multidisciplinary
framework to derive global river reach classifications at high spatial
resolution, Environ. Res. Lett., 14, 024003,
https://doi.org/10.1088/1748-9326/aad8e9, 2019.
Dang, T. D., Chowdhury, A. F. M. K., and Galelli, S.: On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, 2020.
Dark, S. J. and Bram, D.: The modifiable areal unit problem (MAUP) in
physical geography, Prog. Phys. Geogr. Earth Environ., 31, 471–479,
https://doi.org/10.1177/0309133307083294, 2007.
David, C. H., Maidment, D. R., Niu, G.-Y., Yang, Z.-L., Habets, F., and
Eijkhout, V.: River Network Routing on the NHDPlus Dataset, J.
Hydrometeorol., 12, 913–934, https://doi.org/10.1175/2011JHM1345.1, 2011.
Delaigue, O., Thirel, G., Coron, L., and Brigode, P.: airGR and
airGRteaching: Two Open-Source Tools for Rainfall-Runoff Modeling and
Teaching Hydrology, in: EPiC Series in Engineering, HIC 2018, 13th
International Conference on Hydroinformatics, 541–548,
https://doi.org/10.29007/qsqj, 2018.
Demir, I. and Szczepanek, R.: Optimization of river network representation
data models for web-based systems, Earth Space Sci., 4, 336–347,
https://doi.org/10.1002/2016EA000224, 2017.
Diks, C. G. H. and Vrugt, J. A.: Comparison of point forecast accuracy of
model averaging methods in hydrologic applications, Stoch. Environ. Res.
Risk Assess., 24, 809–820, https://doi.org/10.1007/s00477-010-0378-z, 2010.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018.
Döll, P. and Lehner, B.: Validation of a new global 30-min drainage
direction map, J. Hydrol., 258, 214–231,
https://doi.org/10.1016/S0022-1694(01)00565-0, 2002.
Eicher, C. L. and Brewer, C. A.: Dasymetric Mapping and Areal Interpolation:
Implementation and Evaluation, Cartogr. Geogr. Inf. Sci., 28, 125–138,
https://doi.org/10.1559/152304001782173727, 2001.
Eränen, D., Oksanen, J., Westerholm, J., and Sarjakoski, T.: A full
graphics processing unit implementation of uncertainty-aware drainage basin
delineation, Comput. Geosci., 73, 48–60,
https://doi.org/10.1016/j.cageo.2014.08.012, 2014.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Goodchild, M. F. and Lam, N. S. N.: Areal interpolation: A variant of the
traditional spatial problem, Geo-Process., 1, 297–312, 1980.
Goodchild, M. F., Anselin, L., and Deichmann, U.: A Framework for the Areal
Interpolation of Socioeconomic Data, Environ. Plan. Econ. Space, 25,
383–397, https://doi.org/10.1068/a250383, 1993.
Gosling, S., Müller Schmied, H., Betts, R., Chang, J., Ciais, P.,
Dankers, R., Döll, P., Eisner, S., Flörke, M., Gerten, D.,
Grillakis, M., Hanasaki, N., Hagemann, S., Huang, M., Huang, Z., Jerez, S.,
Kim, H., Koutroulis, A., Leng, G., Liu, X., Masaki, Y., Montavez, P.,
Morfopoulos, C., Oki, T., Papadimitriou, L., Pokhrel, Y., Portmann, F. T.,
Orth, R., Ostberg, S., Satoh, Y., Seneviratne, S., Sommer, P., Stacke, T.,
Tang, Q., Tsanis, I., Wada, Y., Zhou, T., Büchner, M., Schewe, J., and
Zhao, F.: ISIMIP2a Simulation Data from Water (global) Sector, GFZ Data Services, Potsdam, Germany,
https://doi.org/10.5880/pik.2017.010, 2017.
Gosling, S. N., Bretherton, D., Haines, K., and Arnell, N. W.: Global
hydrology modelling and uncertainty: running multiple ensembles with a
campus grid, Philos. T. R. Soc. Math. Phys. Eng. Sci., 368, 4005–4021,
https://doi.org/10.1098/rsta.2010.0164, 2010.
Gottschalk, L.: Interpolation of runoff applying objective methods, Stoch.
Hydrol. Hydraul., 7, 269–281, https://doi.org/10.1007/BF01581615, 1993.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/J.JHYDROL.2009.08.003, 2009.
Hamilton, S. H., Fu, B., Guillaume, J. H. A., Badham, J., Elsawah, S.,
Gober, P., Hunt, R. J., Iwanaga, T., Jakeman, A. J., Ames, D. P., Curtis,
A., Hill, M. C., Pierce, S. A., and Zare, F.: A framework for characterising
and evaluating the effectiveness of environmental modelling, Environ. Model.
Softw., 118, 83–98, https://doi.org/10.1016/j.envsoft.2019.04.008, 2019.
Hobeichi, S., Abramowitz, G., Evans, J., and Beck, H. E.: Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product, Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019, 2019.
Kallio, M.: mkkallio/GMD_hydrostreamer: GMD hydrostreamer manuscript
code and part of the data (Version 1.0) [code], Zenodo, https://doi.org/10.5281/zenodo.4739212, 2020.
Kallio, M. and Virkki, V.: mkkallio/hydrostreamer: hydrostreamer v1.0.1 (Version 1.0.1) [code], Zenodo, https://doi.org/10.5281/zenodo.4739223, 2021.
Kallio, M., Virkki, V., Guillaume, J. H. A., and van Dijk, A. I. J. M.:
Downscaling runoff products using areal interpolation: a combined
pycnophylactic-dasymetric method, in: MODSIM2019, 23rd
International Congress on Modelling and Simulation., 23rd International
Congress on Modelling and Simulation (MODSIM2019), edited by: El Sawah, S.,
https://doi.org/10.36334/modsim.2019.K8.kallio, 2019.
Kar, B. and Hodgson, M. E.: A Process Oriented Areal Interpolation
Technique: A Coastal County Example, Cartogr. Geogr. Inf. Sci., 39, 3–16,
https://doi.org/10.1559/152304063913, 2012.
Karimipour, F., Ghandehari, M., and Ledoux, H.: Watershed delineation from
the medial axis of river networks, Comput. Geosci., 59, 132–147,
https://doi.org/10.1016/J.CAGEO.2013.06.004, 2013.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, Eos Trans. Am. Geophys. Union, 89, 93–94,
https://doi.org/10.1029/2008EO100001, 2008.
Leopold, L. B. and Maddock Jr., T.: The hydraulic geometry of stream
channels and some physiographic implications, The hydraulic geometry of
stream channels and some physiographic implications, U.S. Government
Printing Office, Washington, D.C., https://doi.org/10.3133/pp252, 1953.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million
Reaches, Water Resour. Res., 55, 6499–6516,
https://doi.org/10.1029/2019WR025287, 2019.
Lindsay, J. B. and Evans, M. G.: The influence of elevation error on the
morphometrics of channel networks extracted from DEMs and the implications
for hydrological modelling, Hydrol. Process., 22, 1588–1603,
https://doi.org/10.1002/hyp.6728, 2008.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand,
M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and
Thieme, M.: Global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. Data, 6, 283,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., and Zehe, E.: A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation, Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, 2019.
Manley, D.: Scale, Aggregation, and the Modifiable Areal Unit Problem, in:
Handbook of Regional Science, edited by: Fischer, M. M. and Nijkamp, P.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1157–1171,
https://doi.org/10.1007/978-3-642-23430-9_69, 2014.
Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger, R. J., Markstrom, S. L., Hay, L. E., Woods, R., Arnold, J. R., and Brekke, L. D.: mizuRoute version 1: a river network routing tool for a continental domain water resources applications, Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, 2016.
Moody, J. A. and Troutman, B. M.: Characterization of the spatial
variability of channel morphology, Earth Surf. Process. Landf., 27,
1251–1266, https://doi.org/10.1002/esp.403, 2002.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and
Water Quality Models: Performance Measures and Evaluation Criteria, Trans.
ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
MRC: MRC Data and Information Services Portal, available at: http://portal.mrcmekong.org/ (last access: 15 January 2021),
2017.
Nagle, N. N., Buttenfield, B. P., Leyk, S., and Speilman, S.: Dasymetric
Modeling and Uncertainty, Ann. Assoc. Am. Geogr. Assoc. Am. Geogr., 104,
80–95, https://doi.org/10.1080/00045608.2013.843439, 2014.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Paiva, R. C. D., Durand, M. T., and Hossain, F.: Spatiotemporal
interpolation of discharge across a river network by using synthetic SWOT
satellite data, Water Resour. Res., 51, 430–449,
https://doi.org/10.1002/2014WR015618, 2015.
Parajka, J., Merz, R., Skøien, J. O., and Viglione, A.: The role of
station density for predicting daily runoff by top-kriging interpolation in
Austria, J. Hydrol. Hydromech., 63, 228–234,
https://doi.org/10.1515/johh-2015-0024, 2015.
Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector
Data, The R Journal, 10, 439–446, 2018.
Ponce, V.: 10.6 Muskingum-Cunge Method, in: Fundamentals of Open Channel
Hydraulics, San Diego State University, 2014.
Prener, C. and Revord, C.: areal: An R package for areal weighted
interpolation, J. Open Source Softw., 4, 1221,
https://doi.org/10.21105/joss.01221, 2019.
Rase, W.-D.: Volume-preserving interpolation of a smooth surface from
polygon-related data, J. Geogr. Syst., 3, 199–213,
https://doi.org/10.1007/PL00011475, 2001.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2019.
Salmivaara, A., Porkka, M., Kummu, M., Keskinen, M., Guillaume, J. H. A.,
and Varis, O.: Exploring the Modifiable Areal Unit Problem in Spatial Water
Assessments: A Case of Water Shortage in Monsoon Asia, Water, 7, 898–917,
https://doi.org/10.3390/w7030898, 2015.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Shaw, S. B., Beslity, J. O., and Colvin, M. E.: Working Toward a More
Holistic Set of Hydrologic Principles to Teach Non-Hydrologists: Five Simple
Concepts Within Catchment Hydrology, Hydrol. Process., 13485,
https://doi.org/10.1002/hyp.13485, 2019.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006.
Singh, V. P. and Woolhiser, D. A.: Mathematical Modeling of Watershed
Hydrology, J. Hydrol. Eng., 7, 270–292,
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270), 2002.
Skøien, J. O., Merz, R., and Blöschl, G.: Top-kriging – geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10, 277–287, https://doi.org/10.5194/hess-10-277-2006, 2006.
Skøien, J. O., Bogner, K., Salamon, P., Smith, P., and Pappenberger, F.: Regionalization of post-processed ensemble runoff forecasts, Proc. IAHS, 373, 109–114, https://doi.org/10.5194/piahs-373-109-2016, 2016.
Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., Prosdocimi, I., Vitolo, C., and Smith, K.: Using R in hydrology: a review of recent developments and future directions, Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, 2019.
Subramanya, K.: Engineering hydrology, McGraw Hill Education, New York, 2017.
Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, 2021.
Tobler, W. R.: Smooth Pycnophylactic Interpolation for Geographical Regions,
J. Am. Stat. Assoc., 74, 519–530, https://doi.org/10.2307/2286968, 1979.
Vatankhah, A. R. and Easa, S. M.: Depth-independent kinematic wave
parameters for trapezoidal and power-law channels, Ain Shams Eng. J., 4,
173–183, https://doi.org/10.1016/j.asej.2012.08.010, 2013.
Velázquez, J. A., Anctil, F., Ramos, M. H., and Perrin, C.: Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures, Adv. Geosci., 29, 33–42, https://doi.org/10.5194/adgeo-29-33-2011, 2011.
Venhuizen, G. J., Hut, R., Albers, C., Stoof, C. R., and Smeets, I.: Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience, Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, 2019.
Virkki, V.: The value of open-source river streamflow estimation in
Southeast Asia, available at: https://aaltodoc.aalto.fi/handle/123456789/36357 (last access: 1 January 2020), 2019.
Vrugt, J. A. and Robinson, B. A.: Treatment of uncertainty using ensemble
methods: Comparison of sequential data assimilation and Bayesian model
averaging, Water Resour. Res., 43, W01411, https://doi.org/10.1029/2005WR004838,
2007.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T. L., Miller E., Bache S. M., Müller K., Ooms J., Robinson D., Seidel D. P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H.: Welcome to the Tidyverse, J. Open Source Softw., 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wright, J. K.: A Method of Mapping Densities of Population: With Cape Cod as
an Example, Geogr. Rev., 26, 103–110, https://doi.org/10.2307/209467, 1936.
Zaherpour, J., Mount, N., Gosling, S. N., Dankers, R., Eisner, S., Gerten,
D., Liu, X., Masaki, Y., Müller Schmied, H., Tang, Q., and Wada, Y.:
Exploring the value of machine learning for weighted multi-model combination
of an ensemble of global hydrological models, Environ. Model. Softw., 114,
112–128, https://doi.org/10.1016/j.envsoft.2019.01.003, 2019.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for
comparison of simulated and observed hydrological time series, Zenodo,
https://doi.org/10.5281/zenodo.840087, 2017.
Short summary
Different runoff and streamflow products are freely available but may come with unsuitable spatial units. On the other hand, starting a new modelling exercise may require considerable resources. Hydrostreamer improves the usability of existing runoff products, allowing runoff and streamflow estimates at the desired spatial units with minimal data requirements and intuitive workflow. The case study shows that Hydrostreamer performs well compared to benchmark products and observation data.
Different runoff and streamflow products are freely available but may come with unsuitable...