Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3995-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3995-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset
Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Petra Pranić
Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
Damir Ivanković
Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
Iva Tojčić
Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
Ivica Vilibić
Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
Related authors
Cléa Denamiel
Ocean Sci., 21, 1909–1931, https://doi.org/10.5194/os-21-1909-2025, https://doi.org/10.5194/os-21-1909-2025, 2025
Short summary
Short summary
This study advances our understanding of Adriatic marine heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the pseudo-global-warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel
Ocean Sci., 21, 1909–1931, https://doi.org/10.5194/os-21-1909-2025, https://doi.org/10.5194/os-21-1909-2025, 2025
Short summary
Short summary
This study advances our understanding of Adriatic marine heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the pseudo-global-warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Elena Terzić, Clara Gardiol, and Ivica Vilibić
Ocean Sci., 21, 1441–1459, https://doi.org/10.5194/os-21-1441-2025, https://doi.org/10.5194/os-21-1441-2025, 2025
Short summary
Short summary
Vertical salinity profiles with their highest values at the surface layers – surface saline lakes – have been known to occur in the eastern Mediterranean, where strong evaporation, warm summers, and low winds all contribute to an increase in surface salinity. Our analysis of Argo data from the past 2 decades showed that saline lakes also occur in other regions across the Mediterranean Sea. This poses the question of whether such changes indicate a salinification of the entire basin due to climate change.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Damir Ivankovic, Ivan Vučić, Dalibor Jelavić, and Anđela Jelinčić
Abstr. Int. Cartogr. Assoc., 5, 53, https://doi.org/10.5194/ica-abs-5-53-2022, https://doi.org/10.5194/ica-abs-5-53-2022, 2022
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cited articles
Amante, C. and Eakins, B. W.:
ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, 2009.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and Russo, A.:
The Adriatic Sea general circulation. Part I. Air–sea interactions and water mass structure,
J. Phys. Oceanogr.,
27, 1492–1514, https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2, 1997.
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.:
A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications,
B. Am. Meteorol. Soc.,
92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Batistić, M., Garić, R., and Molinero, J. C.:
Interannual variations in Adriatic Sea zooplankton mirror shifts in circulation regimes in the Ionian Sea,
Clim. Res.,
61, 231–240, https://doi.org/10.3354/cr01248, 2014.
Bauer, P., Auligné, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., Kazumori, M., Kim, M.-J., Liu, E. H.-C., McNally, A. P., Macpherson, B., Okamoto, K., Renshaw, R., and Riishøjgaard, L.-P.:
Satellite cloud and precipitation assimilation at operational NWP centres,
Q. J. Roy. Meteor. Soc.,
137, 1934–1951, https://doi.org/10.1002/qj.905, 2011.
Belušić, D. and Klaić, Z. B.:
Estimation of bora wind gusts using a limited area model,
Tellus A,
56, 296–307. https://doi.org/10.1111/j.1600-0870.2004.00068.x, 2004.
Belušić, D., Hrastinski, M., Večenaj, Ž., and Grisogono, B.:
Wind regimes associated with a mountain gap at the northeastern Adriatic coast,
J. Appl. Meteorol. Clim.,
52, 2089–2105, https://doi.org/10.1175/JAMC-D-12-0306.1, 2013.
Belušić Vozila, A., Güttler, I., Ahrens, B., Obermann-Hellhund, A., and Telišman Prtenjak, M.:
Wind over the Adriatic region in CORDEX climate change scenarios,
J. Geophys. Res.-Atmos.,
124, 110–130, https://doi.org/10.1029/2018JD028552, 2019.
Bensi, M., Cardin, V., Rubino, A., Notarstefano, G., and Poulain, P.-M.:
Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012,
J. Geophys. Res.-Oceans,
118, 6064–6075, https://doi.org/10.1002/2013JC009432, 2013.
Betts, A. K. and Harshvardhan:
Thermodynamic constraint on the cloud liquid water feedback in climate models,
J. Geophys. Res.,
92, 8483–8485, https://doi.org/10.1029/JD092iD07p08483, 1987.
Borzelli, G. L. E., Gačić, M., Cardin, V., and Civitarese, G.:
Eastern Mediterranean Transient and reversal of the Ionian Sea circulation,
Geophys. Res. Lett.,
36, L15108, https://doi.org/10.1029/2009GL039261, 2009.
Bretherton, C. S. and Park, S.:
A new moist turbulence parameterization in the Community Atmosphere Model,
J. Climate,
22, 3422–3448, https://doi.org/10.1175/2008JCLI2556.1, 2009.
Brzovíć, N. and Strelec Mahović, N.:
Cyclonic activity and severe Jugo in the Adriatic,
Phys. Chem. Earth Pt. B,
24, 653–657, https://doi.org/10.1016/S1464-1909(99)00061-1, 1999.
Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser, G., and Zampieri, M.:
Predictability of extreme meteo-oceanographic events in the Adriatic Sea,
Q. J. Roy. Meteor. Soc.,
136, 400–413, https://doi.org/10.1002/qj.567, 2010.
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J-R, Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, Rogers, W. E., Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van Vledder, G. P., and van der Westhuysen, A. J.:
Wave modelling in coastal and inner seas,
Prog. Oceanogr.,
167, 164–233, https://doi.org/10.1016/j.pocean.2018.03.010, 2018.
Chan, S. C., Kahana, R., Kendon, E. J., and Fowler, H. J.:
Projected changes in extreme precipitation over Scotland and Northern England using a high-resolution regional climate model,
Clim. Dynam.,
51, 3559–3577, https://doi.org/10.1007/s00382-018-4096-4, 2018.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.:
An ensemble version of the E-OBS temperature and precipitation data sets,
J. Geophys. Res.-Atmos.,
123, 9391– 9409, https://doi.org/10.1029/2017JD028200, 2018.
da Rocha, R. P., Reboita, M. S., Dutra, L. M. M., Llopart, M. P., and Coppola, E.:
Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain,
Climatic Change,
125, 95–109, https://doi.org/10.1007/s10584-014-1119-y, 2014.
Davolio, S., Volonté, A., Manzato, A., Pucillo, A., Cicogna, A., and Ferrario, M. E.:
Mechanisms producing different precipitation patterns over North-Eastern Italy: insights from hymex-SOP1 and previous events,
Q. J. Roy. Meteor. Soc., 142, 188–205, https://doi.org/10.1002/qj.2731, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.:
The ERA-Interim reanalysis: confguration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denamiel, C.: AdriSC Climate Model: evaluation run, https://doi.org/10.17605/OSF.IO/ZB3CM, 2021a.
Denamiel, C.: Evaluation of the AdriSC climate model: atmospheric part, https://doi.org/10.17605/OSF.IO/B2CKT, 2021b.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.:
The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component,
Ocean Model.,
135, 71–93, https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Denamiel, C., Pranić, P., Quentin, F., Mihanović, H., and Vilibić, I.:
Pseudo-global warming projections of extreme wave storms in complex coastal regions: the case of the Adriatic Sea,
Clim. Dynam.,
55, 2483–2509, https://doi.org/10.1007/s00382-020-05397-x, 2020a.
Denamiel, C., Tojčić, I., and Vilibić, I.:
Far future climate (2060–2100) of the northern Adriatic air–sea heat transfers associated with extreme bora events,
Clim. Dynam.,
55, 3043–3066, https://doi.org/10.1007/s00382-020-05435-8, 2020b.
Denamiel, C., Tojčić, I., and Vilibić, I.:
Balancing accuracy and efficiency of atmospheric models in the northern Adriatic during severe bora events,
J. Geophys. Res.-Atmos.,
126, e2020JD033516, https://doi.org/10.1029/2020JD033516, 2021.
Di Virgilio, G., Evans, J. P., Di Luca, A., Olson, R., Argüeso, D., Kala, J., Andrys, J., Hoffmann, P., Katzfey, J. J., and Rockel, B.:
Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors,
Clim. Dynam.,
53, 2985–3005, https://doi.org/10.1007/s00382-019-04672-w, 2019.
Drobinski, P., Silva, N. D., Panthou, G., Bastin, S., Muller, C., Ahrens, B., Borga, M., Conte, D., Fosser, G., Giorgi, F., Güttler, I., Kotroni, V., Li, L., Morin, E., Önol, B., Quintana-Segui, P., Romera R., and Zsolt Torma, C.:
Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios,
Clim. Dynam.,
51, 1237–1257, https://doi.org/10.1007/s00382-016-3083-x, 2018.
Dudhia, J.:
Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,
J. Atmos. Sci.,
46, 3077–3107, 1989.
Dudhia, J.: A Multi-Layer Soil Temperature Model for MM5, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, 22–24 July 1996, 49–50, 1996.
Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A., and Mauri, E.:
The open-ocean convection in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom,
Cont. Shelf Res.,
22, 1897–1908, https://doi.org/10.1016/S0278-4343(02)00050-X, 2002.
Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., and Yari, S.:
Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example,
Geophys. Res. Lett.,
37, L09608, https://doi.org/10.1029/2010GL043216, 2010.
García-Díez, M., Fernández, J., and Vautard, R.:
An RCM multi-physics ensemble over Europe: Multi-variable evaluation to avoid error compensation,
Clim. Dynam., 45, 3141–3156, https://doi.org/10.1007/s00382-015-2529-x, 2015.
Giorgi, F., Jones, C., and Asrar, G. R.:
Addressing climate information needs at the regional level: the CORDEX framework,
WMO Bulletin,
58, 175–183, 2009.
Grisogono, B. and Belušić, D.:
A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind,
Tellus A,
61, 1–16, https://doi.org/10.1111/j.1600-0870.2008.00369.x, 2009.
Held, I. M. and Soden, B. J.:
Robust responses of the hydrological cycle to global warming,
J. Climate,
19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Huang, B., Polanski, S., and Cubasch, U.:
Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations,
Clim. Res.,
64, 141–158, https://doi.org/10.3354/CR01302, 2015.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.:
The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales,
J. Hydrometeorol.,
8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Ivanković, D., Denamiel, C., and Jelavić, D.:
Web visualization of data from numerical models and real-time stations network in frame of Adriatic Sea and Coast (AdriSC) Meteotsunami Forecast,
OCEANS 2019, Marseille, France, 17–20 June 2019, 1–5, https://doi.org/10.1109/OCEANSE.2019.8867225, 2019.
Janeković, I., Mihanović, H., Vilibić, I., and Tudor, M.:
Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012,
J. Geophys. Res.-Oceans,
119, 3200–3218, https://doi.org/10.1002/2014JC009865, 2014.
Janjić, Z.:
The Step-Mountain eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes,
Mon. Weather Rev.,
122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Kain, J. S.:
The Kain–Fritsch convective parameterization: an update,
J. Appl. Meteorol.,
43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Kehler-Poljak, G., Telišman Prtenjak, M., Kvakić, M., Šariri, K., and Večenaj, Ž.:
Interaction of sea breeze and deep convection over the northeastern Adriatic Coast: An analysis of sensitivity experiments using a high-resolution mesoscale model,
Pure Appl. Geophys.,
174, 4197–4224, https://doi.org/10.1007/s00024-017-1607-x, 2017.
Klaić, Z. B., Prodanov, A. D., and Belušić, D.:
Wind measurements in Senj – underestimation of true bora flows,
Geofizika,
26, 245–252, 2009.
Knist, S., Goergen, K., and Simmer, C.:
Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe,
Clim. Dynam.,
55, 325–341, https://doi.org/10.1007/s00382-018-4147-x, 2020.
Kolios, S. and Kalimeris, A.:
Evaluation of the TRMM rainfall product accuracy over the central Mediterranean during a 20-year period (1998–2017),
Theor. Appl. Climatol.,
139, 785–799, https://doi.org/10.1007/s00704-019-03015-3, 2020.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kuzmić, M., Grisogono, B., Li, X., and Lehner, S.:
Examining deep and shallow Adriatic bora events,
Q. J. Roy. Meteor. Soc.,
141, 3434–3438. https://doi.org/10.1002/qj.2578, 2015.
Laprise, R.:
The Euler Equations of motion with hydrostatic pressure as independent variable,
Mon. Weather Rev.,
120, 197–207, https://doi.org/10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2, 1992.
Larson, J., Jacob, R., and Ong, E.:
The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models,
Int. J. High Perform. C.,
19, 277–292, https://doi.org/10.1177/1094342005056115, 2005.
Lawrence, M. G.:
The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications,
B. Am. Meteorol. Soc.,
86, 225–234, https://doi.org/10.1175/BAMS-86-2-225, 2005.
Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., and Pan, X.: High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach, Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019, 2019.
Massonnet, F., Bellprat, O., Guemas, V., and Doblas-Reyes, F. J.:
Using climate models to estimate the quality of global observational data sets,
Science,
354, 452–455, https://doi.org/10.1126/science.aaf6369, 2016.
Mears, C. A., Scott, J., Wentz, F. J., Ricciardulli, L., Leidner, S. M., Hoffman, R., and Atlas, R.:
A near-real-time version of the Cross-Calibrated Multiplatform (CCMP) ocean surface wind velocity data set,
J. Geophys. Res.-Oceans,
124, 6997–7010, https://doi.org/10.1029/2019JC015367, 2019.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,
J. Geophys. Res.,
102, 16663, https://doi.org/10.1029/97JD00237, 1997.
Molcard, A., Pinardi, N., Iskandarani, M., and Haivogel, D. B.:
Wind driven general circulation of the Mediterranean Sea simulated with a Spectral Element Ocean Model,
Dynam. Atmos. Oceans,
35, 97–130, https://doi.org/10.1016/S0377-0265(01)00080-X, 2002.
Mooney, P. A., Mulligan, F. J., and Fealy, R.:
Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–95,
J. Climate,
26, 1002–1017, 2013.
Morrison, H., Curry, J. A., and Khvorostyanov, V. I.:
A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description,
J. Atmos. Sci.,
62, 1665–1677, 2005.
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., Bøssing Christensen, O., Déqué, M., Fernandez, J., Hänsler, A., van Meijgaard, E., Samuelsson, P., Bamba Sylla, M., and Sushama, L.:
Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations,
J. Climate,
25, 6057–6078, https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić, F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., and Vilibić, I.:
Wintertime buoyancy forcing, changing seawater properties and two different circulation systems produced in the Adriatic,
J. Geophys. Res.,
111, C03S07, https://doi.org/10.1029/2005JC003271, 2007.
Pasarić, Z., Belušić, D., and Klaić, Z. B.: Orographic influences on the Adriatic sirocco wind, Ann. Geophys., 25, 1263–1267, https://doi.org/10.5194/angeo-25-1263-2007, 2007.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce, A.:
Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis,
Prog. Oceanogr.,
132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003, 2015.
Prein, A., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N., Keuler, K., and Georgievski, G.:
Added value of convection permitting seasonal simulations,
Clim. Dynam.,
41, 2655–2677, 2013.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.:
A review on regional convection-permitting climate modeling: Demonstrations, prospects and challenges,
Rev. Geophys.,
53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Prtenjak, M. T., Viher, M., and Jurković, J.:
Sea-land breeze development during a summer bora event along the north-eastern Adriatic coast,
Q. J. Roy. Meteor. Soc.,
136, 1554–1571, https://doi.org/10.1002/qj.649, 2010.
Reale, M., Salon, S., Crise, A., Farneti, R., Mosetti, R., and Sannino, G.:
Unexpected covariant behavior of the Aegean and Ionian Seas in the period 1987–2008 by means of a nondimensional sea surface height index,
J. Geophys. Res.-Oceans,
122, 8020–8033, https://doi.org/10.1002/2017JC012983, 2017.
Reale, M., Giorgi, F., Solidoro, C., Di Biagio, V., Di Sante, F., Mariotti, L., Farneti, R., and Sannino, G.:
The regional Earth system Model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry,
J. Adv. Model. Earth Sy.,
12, e2019MS001812, https://doi.org/10.1029/2019MS001812, 2020.
Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D., Bergamasco, A., Sclavo, M., and Carniel, S.:
On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea,
Atmos. Res.,
172–173, 48–65, https://doi.org/10.1016/j.atmosres.2015.12.023, 2016.
Rinke, A. H., Matthes, J. H. Christensen, P., Kuhry, V., Romanovsky, and Dethloff, K.:
Arctic RCM simulations of temperature and precipitation derived indices relevant to future frozen ground conditions,
Global Planet. Change,
80–81,136-148, https://doi.org/10.1016/j.gloplacha.2011.10.011, 2011.
Roether, W. and Schlitzer, R.:
Eastern Mediterranean deep water renewal on the basis of chlorofluoromethane and tritium data,
Dynam. Atmos. Oceans,
15, 333–354, https://doi.org/10.1016/0377-0265(91)90025-B, 1991.
Rubino, A., Gačić, M., Bensi, M., Kovačević, V., Malačič, V., Menna, M., Negretti, M. E., Sommeria, J., Zanchettin, D., Barreto, R. V., Ursella, L., Cardin, V., Civitarese, G., Orlić, M., Petelin, B., and Siena, G.:
Experimental evidence of long-term oceanic circulation reversals without wind influence in the North Ionian Sea,
Sci. Rep.-UK,
10, 1905, https://doi.org/10.1038/s41598-020-57862-6, 2020.
Ruti, P., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B., Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J., Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos, W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E., Djurdjevic, V., Drobinski, P., Elizalde, A., Gaertner, M., Galan, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jorda, G., Lheveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Macias-Moy, D., Nabat, P., Onol, B., Rajkovic, B., Ramage, K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and Vervatis, V.:
MED-CORDEX initiative for Mediterranean climate studies,
B. Am. Meteorol. Soc.,
97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Schär, C., Frei, C., Luthi, D., and Davies, H. C.:
Surrogate climate-change scenarios for regional climate models,
Geophys. Res. Lett.,
23, 669–672, https://doi.org/10.1029/96GL00265, 1996.
Sein, D. V., Gröger, M., Cabos, W., Alvarez-Garcia, F. J., Hagemann, S., Pinto, J. G., Izquierdo, A., de la Vara, A., Koldunov, N. V., Dvornikov, A. Y., Limareva, N., Alekseeva, E., Martinez-Lopez, B., and Jacob, D.:
Regionally coupled atmosphere–ocean-marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe,
J. Adv. Model. Earth Sy.,
12, e2019MS001646, https://doi.org/10.1029/2019MS001646, 2020.
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C., Nabat, P., Adloff, F., Déqué, M., and Decharme, B.:
A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period,
Tellus A,
66, 23967, https://doi.org/10.3402/tellusa.v66.23967, 2014.
Shchepetkin, A. F. and McWilliams, J. C.:
Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comput. Phys., 227, pp. 3595–3624,
J. Comput. Phys.,
228, 8985–9000, https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., and Dobricic, S.:
Mediterranean Sea physical reanalysis (MEDREA 1987-2015) (Version 1),
Copernicus Monitoring Environment Marine Service (CMEMS), https://doi.org/10.25423/medsea_reanalysis_phys_006_004, 2014.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.:
A description of the Advanced Research WRF Version 2,. NCAR Technical Note NCAR/TN-468+STR, https://doi.org/10.5065/D6DZ069T, 2005.
Somot, S., Sevault, F., and Déqué, M.:
Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model,
Clim. Dynam.,
27, 851–879, https://doi.org/10.1007/s00382-006-0167-z, 2006.
Somot, S., Ruti, P., Ahrens, B., Coppola, E., Jordà, G., Sannino, G., and Solmon, F.:
Editorial for the Med-CORDEX special issue,
Clim. Dyn.,
51, 771–777, https://doi.org/10.1007/s00382-018-4325-x, 2018.
Taylor, K. E.:
Summarizing multiple aspects of model performance in a single diagram,
J. Geophys. Res.,
106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Varga, Á. J. and Breuer, H.:
Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications,
Clim. Dynam.,
55, 2849–2866, https://doi.org/10.1007/s00382-020-05416-x, 2020.
Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., Dunić, N., Dadić, V., Pasarić, M., Muslim, S., Gerin, R., Matić, F., Šepić, J., Mauri, E., Kokkini, Z., Tudor, M., Kovač, Ž., and Džoić, T.: Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment, Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, 2018.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.:
Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system,
Ocean Model.,
35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., and Bauer, H.-S.:
Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: precipitation in Germany,
Clim. Dynam.,
41, 755–774, https://doi.org/10.1007/s00382-013-1727-7, 2013.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.:
A new digital bathymetric model of the world's oceans,
Earth and Space Science,
2, 331–345, https://doi.org/10.1002/2015EA000107, 2015.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N. M.:
Future changes to the intensity and frequency of short-duration extreme rainfall,
Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Zou, L. and Zhou, T.:
Dynamical downscaling of East Asian winter monsoon changes with a regional ocean–atmosphere coupled model,
Q. J. Roy. Meteor. Soc.,
143, 2245–2259, https://doi.org/10.1002/qj.3082, 2017.
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017)...