Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3553-2021
https://doi.org/10.5194/gmd-14-3553-2021
Model description paper
 | Highlight paper
 | 
11 Jun 2021
Model description paper | Highlight paper |  | 11 Jun 2021

A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0

Colton J. Conroy and Einat Lev

Data sets

DG_Lava_2D Einat Lev and Colton J. Conroy https://doi.org/10.5281/zenodo.3863306

Model code and software

DG_Lava_2D Colton J. Conroy https://doi.org/10.5281/zenodo.3863306

Download
Short summary
Lava flows present a natural hazard to communities around volcanoes and are usually slow-moving (< 1-5 cm/s). Lava flows during the 2018 eruption of Kilauea volcano, Hawai’i, however, reached speeds as high as 11 m/s. To investigate these dynamics we develop a new lava flow computer model that incorporates a nonlinear expression for the fluid viscosity. Model results indicate that the lava flows at Site 8 of the eruption displayed shear thickening behavior due to the flow's high bubble content.