Articles | Volume 14, issue 6
Geosci. Model Dev., 14, 3141–3158, 2021
https://doi.org/10.5194/gmd-14-3141-2021
Geosci. Model Dev., 14, 3141–3158, 2021
https://doi.org/10.5194/gmd-14-3141-2021

Model evaluation paper 02 Jun 2021

Model evaluation paper | 02 Jun 2021

A case study of wind farm effects using two wake parameterizations in the Weather Research and Forecasting (WRF) model (V3.7.1) in the presence of low-level jets

Xiaoli G. Larsén and Jana Fischereit

Related authors

Human impacts and their interactions in the Baltic Sea region
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-54,https://doi.org/10.5194/esd-2021-54, 2021
Preprint under review for ESD
Short summary
Natural Hazards and Extreme Events in the Baltic Sea region
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-13,https://doi.org/10.5194/esd-2021-13, 2021
Preprint under review for ESD
Short summary
Wave boundary layer model in SWAN revisited
Jianting Du, Rodolfo Bolaños, Xiaoli Guo Larsén, and Mark Kelly
Ocean Sci., 15, 361–377, https://doi.org/10.5194/os-15-361-2019,https://doi.org/10.5194/os-15-361-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Grid-independent high-resolution dust emissions (v1.0) for chemical transport models: application to GEOS-Chem (12.5.0)
Jun Meng, Randall V. Martin, Paul Ginoux, Melanie Hammer, Melissa P. Sulprizio, David A. Ridley, and Aaron van Donkelaar
Geosci. Model Dev., 14, 4249–4260, https://doi.org/10.5194/gmd-14-4249-2021,https://doi.org/10.5194/gmd-14-4249-2021, 2021
Short summary
Oxidation of low-molecular-weight organic compounds in cloud droplets: development of the Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) in CAABA/MECCA (version 4.5.0)
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021,https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
Prediction of source contributions to urban background PM10 concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 – Part 2: The city contribution
Matthieu Pommier
Geosci. Model Dev., 14, 4143–4158, https://doi.org/10.5194/gmd-14-4143-2021,https://doi.org/10.5194/gmd-14-4143-2021, 2021
Short summary
Vertical structure of cloud radiative heating in the tropics: confronting the EC-Earth v3.3.1/3P model with satellite observations
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021,https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021,https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary

Cited articles

4Coffshore: Global Offshore Wind Farms, available at: http://www.4coffshore.com, last access: 29 May 2021. a
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm during a diurnal cycle, J. Turbulence, 17, 420–441, https://doi.org/10.1080/14685248.2015.1127379, 2016. a
Archer, C. L., Wu, S., and Ma, Y.: Two corrections for turbulent kinetic energy generated by wind farms in the WRF model, Mon. Weather Rev., 148, 4823–4835, https://doi.org/10.1175/MWR-D-20-0097.1, 2020. a, b, c, d, e, f, g, h, i, j
Badger, J., Imberger, M., Volker, P., A. Kleidon, S. G., and Minz, J.: Making the most of offshore wind – re-evaluating the potential of offshore wind in the German North Sea, available at: https://www.agora-energiewende.de/en/publications/making-the-most-of-offshore-wind/ (last access: 29 May 2021), 2020. a
Bärfuss, K., Hankers, R., Bitter, M., Feuerle, T., Schulz, H., Rausch, T., Platis, A., Bange, J., and Lampert, A.: In-situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight, PANGAEA, https://doi.org/10.1594/PANGAEA.902845, 2019a. a, b, c, d, e, f, g
Download
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.