Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3141-2021
https://doi.org/10.5194/gmd-14-3141-2021
Model evaluation paper
 | 
02 Jun 2021
Model evaluation paper |  | 02 Jun 2021

A case study of wind farm effects using two wake parameterizations in the Weather Research and Forecasting (WRF) model (V3.7.1) in the presence of low-level jets

Xiaoli G. Larsén and Jana Fischereit

Related authors

Can the Mann model describe the typhoon turbulence?
Sara Müller, Xiaoli Guo Larsén, and Fei Hu
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-7,https://doi.org/10.5194/wes-2025-7, 2025
Preprint under review for WES
Short summary
Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parametrization in the Weather Research and Forecasting model
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024,https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Modelling wind farm effects in HARMONIE–AROME (cycle 43.2.2) – Part 1: Implementation and evaluation
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024,https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
The Impact of Climate Change on Extreme Winds over Northern Europe According to CMIP6
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102,https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Adjusted spectral correction method for calculating extreme winds in tropical-cyclone-affected water areas
Xiaoli Guo Larsén and Søren Ott
Wind Energ. Sci., 7, 2457–2468, https://doi.org/10.5194/wes-7-2457-2022,https://doi.org/10.5194/wes-7-2457-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

4Coffshore: Global Offshore Wind Farms, available at: http://www.4coffshore.com, last access: 29 May 2021. a
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm during a diurnal cycle, J. Turbulence, 17, 420–441, https://doi.org/10.1080/14685248.2015.1127379, 2016. a
Archer, C. L., Wu, S., and Ma, Y.: Two corrections for turbulent kinetic energy generated by wind farms in the WRF model, Mon. Weather Rev., 148, 4823–4835, https://doi.org/10.1175/MWR-D-20-0097.1, 2020. a, b, c, d, e, f, g, h, i, j
Badger, J., Imberger, M., Volker, P., A. Kleidon, S. G., and Minz, J.: Making the most of offshore wind – re-evaluating the potential of offshore wind in the German North Sea, available at: https://www.agora-energiewende.de/en/publications/making-the-most-of-offshore-wind/ (last access: 29 May 2021), 2020. a
Bärfuss, K., Hankers, R., Bitter, M., Feuerle, T., Schulz, H., Rausch, T., Platis, A., Bange, J., and Lampert, A.: In-situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight, PANGAEA, https://doi.org/10.1594/PANGAEA.902845, 2019a. a, b, c, d, e, f, g
Download
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.
Share